Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
O9-1 ist eine Zell-Linie multipotent Maus Neuralleiste. Hier beschreiben wir detaillierte Schritt für Schritt Protokolle für die Kultivierung O9-1-Zellen, O9-1-Zellen in bestimmten Zelltypen differenzieren und genetisch manipuliert O9-1-Zellen mit SiRNA-vermittelten Zuschlag oder CRISPR-Cas9 Genom-Bearbeitung.
Zellen der Neuralleiste (NCCs) migrieren multipotenten Stammzellen, die in verschiedene Zelltypen differenzieren und mehrere Gewebe und Organe entstehen können. Die Zellinie O9-1 ergibt sich aus der endogenen Maus embryonalen NCCs und behält seine Multipotenz. Jedoch unter bestimmten Kulturbedingungen O9-1-Zellen können in verschiedene Zelltypen differenzieren und in einer Vielzahl von Anwendungen in der Forschung eingesetzt werden. Vor kurzem, haben mit der Kombination aus Maus und O9-1 Zelle Studien, wir gezeigt, dass das Nilpferd Weg Effektoren Signaltechnik, Yap und Taz in der Neuralleiste stammenden kraniofazialen Entwicklung eine wichtige Rolle spielen. Obwohl die Kultivierung Prozess für O9-1 Zellen komplizierter als bei anderen Zelllinien, ist O9-1-Zell-Linie ein leistungsfähiges Modell für die Untersuchung von NCCs in Vitro. Hier präsentieren wir Ihnen ein Protokoll für die Kultivierung der O9-1-Zell-Linie um seine Stemness sowie Protokolle zur Differenzierung von O9-1-Zellen in verschiedene Zelltypen, wie glatten Muskelzellen und Osteoblasten zu erhalten. Darüber hinaus werden Protokolle beschrieben, für die Durchführung von Gen Verlustfunktion-Studien in O9-1-Zellen mithilfe von CRISPR-Cas9 löschen und kleine interferierende RNA-vermittelte Zuschlag.
Neuralleiste (NCCs) multipotenten Stammzellen-ähnliche Zellen sind mit einem bemerkenswerten wandernden Fähigkeit und vorübergehende Existenz während der Embryonalentwicklung. NCCs entstehen zwischen der Oberfläche Ektoderm und das Neuralrohr und Migrieren auf andere Teile des Embryos während der embryonalen Entwicklung1. Basierend auf ihrer Funktionsbereiche, können in mehrere verschiedene Arten, einschließlich kranialen, Stamm, vagalen, Sakral, und kardiale NCCs NCCs eingestuft werden. Darüber hinaus können NCCs in mehrere Linien der Zelle, wie glatten Muskelzellen, Knochenzellen und Neuronen, differenzieren und geben Anlass zu verschiedenen Geweben2,3. Die Entwicklung der NCCs zeichnet sich durch eine komplexe Reihe von morphogenetischen Ereignisse, die durch verschiedene Molekulare Signale abgestimmt sind. Angesichts der komplexen Regulation der NCCs und ihre wichtigen Beiträge zu zahlreichen Strukturen, kann die Dysregulation des NCC Entwicklung häufig zu angeborenen Missbildungen, welches Konto für fast 30 % aller menschlichen angeborenen Missbildungen führen. Anomalien bei der Neuralleiste Entwicklung führen zu gespaltenen Lippe/Gaumen, fehlerhaft Nase Bildung, Syndrome, Mängel wie defekte kardiale Ausflusstrakt oder sogar die Kindersterblichkeit1,4,5, 6 , 7. Verständnis der molekularen Mechanismen des NCC Entwicklung ist wichtig für die Entwicklung von Therapien für Krankheiten, die durch Mängel im NCC-Entwicklung. Mit der Einsatz von verschiedenen in Vitro und in Vivo nähert sich8,9,10,11,12,13,14 ,15, erhebliche Fortschritte in der NCC-Forschung. In Vivo, Tiermodelle, darunter Hühner, Amphibien, Zebrafisch und Mäusen wurden verwendet, um NCCs1zu untersuchen. Darüber hinaus wurden menschliche Embryonen eingesetzt, um den Prozess der NCC-Migration in der frühen menschlichen Embryo Entwicklung16zu studieren. In-Vitrozellmodelle für NCCs, wie menschliche NCCs aus der Patienten subkutanen Fettgewebes, wurden verwendet, um die Parkinson-Krankheit17untersuchen. Die O9-1 NCC-Linie, die ursprünglich von massenkulturen des endogenen NCCs isoliert vom E8.5 Maus Embryonen18abgeleitet wurde, ist eine leistungsstarke zellenmodell für das Studium NCCs. vor allem unter Kulturbedingungen nicht zu unterscheiden, O9-1-Zellen sind multipotente Stammzellen-ähnliche NCCs. Allerdings können unter unterschiedlichen Kulturbedingungen O9-1-Zellen in angesehenen Zelltypen, wie z. B. die glatten Muskelzellen, Osteoblasten und Chondrozyten Gliazellen18unterschieden werden. Diese Eigenschaften gegeben, wurden O9-1-Zellen im großen und ganzen für NCC-bezogene Studien, wie z.B. untersuchen die molekulare Mechanismen der kranialen Gesichtsbehandlung Mängel19,20eingesetzt.
Hier ausführliche Protokolle sind zur Verfügung gestellt für die Aufrechterhaltung O9-1-Zellen, O9-1-Zellen in verschiedene Zelltypen differenzieren und O9-1-Zellen zu manipulieren, indem Sie gen Verlustfunktion-Studien mit CRISPR-Cas9 Genom-Bearbeitung und kleine interferierende RNA (SiRNA) durchführen- Knockdown Technologien vermittelt. Als ein repräsentatives Beispiel bezeichnet man die Verwendung von O9-1-Zellen, Yap und Taz Verlustfunktion zu studieren. Yap und Taz sind die nachgelagerten Effektoren das Nilpferd Signalweg, der spielt eine entscheidende Rolle in der Zell-Proliferation, Differenzierung und Apoptose. Der Hippo-Weg wurde auch gezeigt, wichtig in der Entwicklung und Homöostase von mehreren verschiedenen Geweben und Organen sowie in der Pathogenese der verschiedenen Krankheiten20,21,22,23 ,24,25,26,27,28. Die Kernkomponenten von Hippo-Signalisierung gehören Tumorsuppressor steril 20-Like Kinasen Mst1/2, WW Domäne-haltigen Salvador Gerüst Protein und die großen Tumor-Suppressor-Homolog (Lats1/2)-Kinasen. Nilpferd-Signalisierung Yap und Taz Aktivität hemmt und fördert deren Abbau im Zytoplasma. Ohne Unterdrückung von Hippo Yap und Taz translozieren in Kerne und fungieren als transkriptioneller Co-Aktivatoren. Wir vor kurzem zeigte, dass speziell Inaktivierung der Hippo Signalisierung Effektoren Yap und Taz in Maus NCCs mithilfe der Wnt1Cre und Wnt1Cre2SOR Treiber führte zu embryonalen Tödlichkeit bei E10.5 mit schweren Kraniofaziale defekte20. Wir haben auch Studien mit O9-1-Zellen um zu untersuchen, die Rolle von Yap und Taz in NCCs durchgeführt. Um Yap und Taz Funktion im NCC Proliferation und Differenzierung, Yap und Taz Zuschlag zu untersuchen wurden Zellen mit SiRNA in O9-1-Zellen erzeugt und Yap -Knockout-Zellen wurden mittels CRISPR-Cas9 Genom-Bearbeitung erzeugt. Die gleichen Gen Verlustfunktion-Strategien können auf unterschiedliche Zielgene in andere Bahnen angewendet werden. Darüber hinaus können Gewinn Funktionsstudien und Transfektion Assays auf O9-1-Zellen, Genfunktion und Regulation zu studieren auch angewendet werden. Die hier beschriebenen Protokolle sollen von den Forschern als Führer für die Kultivierung O9-1-Zellen um multipotenten Stemness beizubehalten, zur Differenzierung von O9-1-Zellen in andere Zelltypen unter verschiedenen Kulturbedingungen und für das Studium der Genfunktion verwendet werden und die molekularen Mechanismen der NCCs.
1. Vorbereitung vor O9-1 Zellkultur
Hinweis: Basale Medien O9-1 Zellkultur müssen durch Inzucht Sandos Mäuse Thioguanine/Ouabain-resistente (STO) Maus fibroblastenzellen konditioniert sind; Daher müssen STO Zellen gewonnen und zubereitet, wie unten beschrieben vor Beginn der Zellkultur O9-1.
(2) O9-1 Zellkultur
3. Aufrechterhaltung O9-1-Zellen
Hinweis: Arbeiten basale Medien O9-1 ist Filter sterilisiert konditioniert basale Medien, welche LIF (Endkonzentration 103 Einheiten/mL) und bFGF (Endkonzentration 25 ng/mL) werden sofort hinzugefügt, um die Zelle Kulturschale vor Gebrauch. Der Datenträger muss vor Licht geschützt und bei 4 ° c gelagert
(4) Manipulation von O9-1-Zellen
(5) O9-1-Zell-Differenzierung
Das Ziel unserer Knockdown und Knockout Experimente war Studie zu den Auswirkungen von Yap und Taz -des-Verlustfunktion in O9-1-Zellen. Vor den Knockdown und Knockout versuchen müssen wir sicherstellen, die basale Medien und Kultur O9-1 Zellen wie oben beschrieben (z. B. Basalmembran Matrix Bedürfnisse decken die ganze Platte wie in Abbildung 1und O9-1-Zellen erholte sich vorzubereiten von flüssigem Stickstoff wie in ...
Das NCC ist ein vielseitig und wichtigen Beitrag zu verschiedenen Geweben und Organen während der embryonalen Morphogenese. O9-1-Zell-Linie unterhält das Potenzial, sich in viele verschiedene Zelltypen differenzieren und die in-Vivo -Merkmale der NCCs, so dass es eine nützliche in-vitro- Werkzeug für die Untersuchung Genfunktion und molekulare Regulation in NCCs imitiert. Die unterschiedliche Status der O9-1-Zellen kann verschiedene Neuralleiste Nachkommen in Vivo, je nach Kulturbedingungen...
Die Autoren haben nichts preisgeben.
Nicole Stancel, Ph.d., ELS, von wissenschaftlichen Publikationen des Texas Heart Institute, Unterstützung redaktionelle. Wir danken auch die folgenden Finanzierungsquellen: die American Heart Association nationale Zentrum Wissenschaftler Development Grant (14SDG19840000, J. Wang), der 2014 Lawrence-Forschungspreis aus Rolanette und Berdon Lawrence Knochen Krankheit Programm von Texas (, J. Wang ), und die National Institutes of Health (DE026561 und DE025873, J. Wang, DE016320 und DE019650, R. Maxson).
Name | Company | Catalog Number | Comments |
Active STO feeder cells | ATCC | ATCC CRL-1503 | Also available in mitomycin C-inactivated form, catalog # ATCC 56-X |
O9-1 mouse cranial neural crest cell line | Millipore Sigma | SCC049 | |
DMEM, high glucose, no glutamine | Gibco | 11960-044 | |
DMEM, high glucose | Hyclone | SH30243.01 | |
FBS (fetal bovine serum) | Millipore Sigma | ES-009-B | |
Penicillin - streptomycin | Gibco | 15140-122 | |
L-glutamine 200 mM (100x) | Gibco | 25030-081 | |
Gelatin from porcine skin | Sigma | G1890 | |
Trypsin-EDTA 0.25% in HBSS | Genesee Scientific | 25-510 | |
DPBS (Dulbecco's phosphate buffered saline) without calcium or magnesium | Lonza | 17-512F | |
MEM non-essential amino acids (MEM NEAA) 100Xx | Gibco | 11140-050 | |
Sodium pyruvate (100 mM) | Gibco | 11360-070 | |
2-Mercaptoethanol | Sigma | M-7522 | |
ESGRO leukemia inhibitory factor (LIF) 106 unit/mL | Millipore Sigma | ESG1106 | |
Recombinant human fibroblast growth factor-basic (rhFGF-basic) | R&D Systems | 233-FB-025 | |
Mitomycin C | Roche | 10107409001 | |
Matrigel matrix | Corning | 356234 | |
DMSO (dimethylsulfoxide) | Millipore Sigma | MX1458-6 | |
Lipofectamine RNAiMAX | Thermo Fisher Scientific | 13778-075 | |
Opti-MEM I (1x) | Gibco | 31985-070 | |
Minimum essential medium, alpha 1x with Earle's salts, ribonucleosides, deoxyribonucleosides, & L-glutamine | Corning | 10-022-CV | |
ON-TARGETplus Wwtr1 siRNA | Dharmacon | L-041057 | |
ON-TARGETplus Non-targeting Pool | Dharmacon | D-001810 | |
ON-TARGETplus Yap1 siRNA | Dharmacon | L-046247 | |
FCS (fetal calf serum) | |||
ITS (insulin-transferrin-selenium) | |||
TGF-b3 | |||
Ascorbic acid | |||
BMP2 (bone morphogenetic protein 2) | |||
Dexamethasone | |||
B-27 supplement |
An erratum was issued for: Culturing and Manipulation of O9-1 Neural Crest Cells. The Protocol section was updated.
Step 2.1 was updated from:
Prepare basal media for O9-1 cell culture by adding the following in DMEM (final concentrations are indicated): 15% FBS, 0.1 mM minimum essential media (MEM) nonessential amino acids, 1 mM sodium pyruvate, 55 mM beta-mercaptoethanol, 100 U/mL penicillin, 100 U/mL streptomycin, 2 mM L-glutamine, 103 units/mL leukemia inhibitory factor (LIF; added immediately before use, do not add to stock bottle), and 25 ng/mL fibroblast growth factor-basic (bFGF; added immediately before use, do not add to stock bottle).
to:
Prepare basal media for O9-1 cell culture by adding the following in DMEM (final concentrations are indicated): 15% FBS, 0.1 mM minimum essential media (MEM) nonessential amino acids, 1 mM sodium pyruvate, 55 µM beta-mercaptoethanol, 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, 103 units/mL leukemia inhibitory factor (LIF; added immediately before use, do not add to stock bottle), and 25 ng/mL fibroblast growth factor-basic (bFGF; added immediately before use, do not add to stock bottle).
Step 5.1.1 was updated from:
To prepare osteogenic differentiation media, dilute the following in alpha-MEM (final concentrations are indicated): 0.1 mM dexamethasone, 100 ng/mL bone morphogenetic protein 2 (BMP2), 50 µg/mL ascorbic acid, 10 mM b-glycerophosphate, 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin.
to:
To prepare osteogenic differentiation media, dilute the following in alpha-MEM (final concentrations are indicated): 0.1 µM dexamethasone, 100 ng/mL bone morphogenetic protein 2 (BMP2), 50 µg/mL ascorbic acid, 10 mM b-glycerophosphate, 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin.
Step 5.2.1 was updated from:
To prepare chondrocyte differentiation media, dilute the following in alpha-MEM (final concentrations are indicated): 5% fetal calf serum (FCS), 1% insulin-transferrin-selenium (ITS), 100 U/mL penicillin, 100 mg/mL streptomycin, 10 ng/mL transforming growth factor beta (TGF-b3), 50 mg/mL ascorbic acid, 10 ng/mL BMP2, 0.1 mM dexamethasone, and 1 mM sodium pyruvate.
to:
To prepare chondrocyte differentiation media, dilute the following in alpha-MEM (final concentrations are indicated): 5% fetal calf serum (FCS), 1% insulin-transferrin-selenium (ITS), 100 U/mL penicillin, 100 µg/mL streptomycin, 10 ng/mL transforming growth factor beta (TGF-b3), 50 µg/mL ascorbic acid, 10 ng/mL BMP2, 0.1 µM dexamethasone, and 1 mM sodium pyruvate.
Step 5.4.1 was updated from:
To prepare glial cell differentiation media, dilute the following in DMEM/F12 (final concentrations are indicated): 1x B-27 supplement, 2 mM L-glutamine, 50 ng/mL BMP2, 100 U/mL penicillin, 100 mg/mL streptomycin, 50 ng/mL LIF, and 1% heat-inactivated FBS.
to:
To prepare glial cell differentiation media, dilute the following in DMEM/F12 (final concentrations are indicated): 1x B-27 supplement, 2 mM L-glutamine, 50 ng/mL BMP2, 100 U/mL penicillin, 100 µg/mL streptomycin, 50 ng/mL LIF, and 1% heat-inactivated FBS.
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten