JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Genetics

Culturing and Manipulation of O9-1 Neural Crest Cells

Published: October 9th, 2018

DOI:

10.3791/58346

1Molecular Physiology and Biophysics, Baylor College of Medicine, 2Department of Biochemistry and Molecular Biology, University of Southern California

O9-1 is a multipotent mouse neural crest cell line. Here we describe detailed step-by-step protocols for culturing O9-1 cells, differentiating O9-1 cells into specific cell types, and genetically manipulating O9-1 cells by using siRNA-mediated knockdown or CRISPR-Cas9 genome editing.

Neural crest cells (NCCs) are migrating multipotent stem cells that can differentiate into different cell types and give rise to multiple tissues and organs. The O9-1 cell line is derived from the endogenous mouse embryonic NCCs and maintains its multipotency. However, under specific culture conditions, O9-1 cells can differentiate into different cell types and be utilized in a wide range of research applications. Recently, with the combination of mouse studies and O9-1 cell studies, we have shown that the Hippo signaling pathway effectors Yap and Taz play important roles in neural crest-derived craniofacial development. Although the culturing process for O9-1 cells is more complicated than that used for other cell lines, the O9-1 cell line is a powerful model for investigating NCCs in vitro. Here, we present a protocol for culturing the O9-1 cell line to maintain its stemness, as well as protocols for differentiating O9-1 cells into different cell types, such as smooth muscle cells and osteoblasts. In addition, protocols are described for performing gene loss-of-function studies in O9-1 cells by using CRISPR-Cas9 deletion and small interfering RNA-mediated knockdown.

Neural crest cells (NCCs) are multipotent stem-like cells with a remarkable migratory ability and transient existence during embryonic development. NCCs originate between the surface ectoderm and the neural tube and migrate to other parts of the embryo during embryonic development1. Based on their functional domains, NCCs can be classified into several different types, including cranial, trunk, vagal, sacral, and cardiac NCCs. In addition, NCCs can differentiate into multiple cell lineages, such as smooth muscle cells, bone cells, and neurons, and give rise to various tissues2,3. The de....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation Before O9-1 Cell Culture

NOTE: Basal media used for O9-1 cell culture must have been conditioned by Sandos inbred mice thioguanine/ouabain-resistant (STO) mouse fibroblast cells; therefore, STO cells need to be obtained and prepared as described below before starting O9-1 cell culture.

  1. Active STO cell culture
    1. Prepare media for culturing active STO cells by making complete Dulbecco's modified Eagle's media (DMEM) with 7% fetal bovi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The goal of our knockdown and knockout experiments was to study the effects of Yap and Taz loss-of-function in O9-1 cells. Before the knockdown and knockout experiments, we have to make sure that prepare for basal media and culture O9-1 cells as described above (for example, basement membrane matrix needs to cover the whole plate as shown in Figure 1, and O9-1 cells recovered from liquid nitrogen as shown in Figure 2

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The NCC is a versatile and key contributor to different tissues and organs during embryonic morphogenesis.The O9-1 cell line maintains its potential to differentiate into many different cell types and mimics the in vivo characteristics of NCCs, making it a useful in vitro tool for studying gene function and molecular regulation in NCCs. The different status of O9-1 cells may correspond to different neural crest progeny in vivo, depending on the culture conditions of O9-1 cells. O9-1 cells can b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Nicole Stancel, Ph.D., ELS, of Scientific Publications at the Texas Heart Institute, provided editorial support. We also thank the following funding sources: the American Heart Association's National Center Scientist Development Grant (14SDG19840000 to J. Wang), the 2014 Lawrence Research Award from the Rolanette and Berdon Lawrence Bone Disease Program of Texas (to J. Wang), and the National Institutes of Health (DE026561 and DE025873 to J. Wang, DE016320 and DE019650 to R. Maxson).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Active STO feeder cells ATCC ATCC CRL-1503 Also available in mitomycin C-inactivated form, catalog # ATCC 56-X
O9-1 mouse cranial neural crest cell line Millipore Sigma SCC049
DMEM, high glucose, no glutamine Gibco 11960-044
DMEM, high glucose Hyclone SH30243.01
FBS (fetal bovine serum) Millipore Sigma ES-009-B
Penicillin - streptomycin Gibco 15140-122
L-glutamine 200mM (100X) Gibco 25030-081
Gelatin from porcine skin Sigma G1890
Trypsin-EDTA 0.25% in HBSS Genesee Scientific 25-510
DPBS (Dulbecco's phosphate buffered saline) without calcium or magnesium Lonza 17-512F
MEM non-essential amino acids (MEM NEAA) 100X Gibco 11140-050
Sodium pyruvate (100mM) Gibco 11360-070
2-Mercaptoethanol Sigma M-7522
ESGRO leukemia inhibitory factor (LIF) 106 unit/ml Millipore Sigma ESG1106
Recombinant human fibroblast growth factor-basic (rhFGF-basic) R&D Systems 233-FB-025
Mitomycin C Roche 10107409001
Matrigel matrix Corning 356234
DMSO (dimethylsulfoxide) Millipore Sigma MX1458-6
Lipofectamine RNAiMAX Thermo Fisher Scientific 13778-075
Opti-MEM I (1X) Gibco 31985-070
Minimum essential medium, alpha 1X with Earle's salts, ribonucleosides, deoxyribonucleosides, & L-glutamine Corning 10-022-CV
ON-TARGETplus Wwtr1 siRNA Dharmacon L-041057
ON-TARGETplus Non-targeting Pool Dharmacon D-001810
ON-TARGETplus Yap1 siRNA Dharmacon L-046247
FCS (fetal calf serum)
ITS (insulin-transferrin-selenium )
TGF-b3
Ascorbic acid
BMP2 (bone morphogenetic protein 2)
Dexamethasone
B-27 supplement

  1. Achilleos, A., Trainor, P. A. Neural crest stem cells: discovery, properties and potential for therapy. Cell Research. 22 (2), 288-304 (2012).
  2. Le Douarin, N. M., Dupin, E. Multipotentiality of the neural crest. Current Opinion in Genetics and Development. 13 (5), 529-536 (2003).
  3. Santagati, F., Rijli, F. M. Cranial neural crest and the building of the vertebrate head. Nature Reviews. Neuroscience. 4 (10), 806-818 (2003).
  4. Cordero, D. R., et al. Cranial neural crest cells on the move: their roles in craniofacial development. American Journal of Medical Genetics. Part A. 155 (2), 270-279 (2011).
  5. Trainor, P. A. Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. American Journal of Medical Genetics. Part A. 152 (12), 2984-2994 (2010).
  6. Bronner, M. E., Simoes-Costa, M. The neural crest migrating into the twenty-first century. Current Topics in Developmental Biology. , 115-134 (2016).
  7. Zurkirchen, L., Sommer, L. Quo vadis: tracing the fate of neural crest cells. Current Opinion in Neurobiology. 47, 16-23 (2017).
  8. Sauka-Spengler, T., Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nature Reviews. Molecular Cell Biology. 9 (7), 557-568 (2008).
  9. Knecht, A. K., Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Reviews. Genetics. 3 (6), 453-461 (2002).
  10. Steventon, B., Carmona-Fontaine, C., Mayor, R. Genetic network during neural crest induction: from cell specification to cell survival. Seminars in Cell and Developmental Biology. 16 (6), 647-654 (2005).
  11. Raible, D. W. Development of the neural crest: achieving specificity in regulatory pathways. Current Opinion in Cell Biology. 18 (6), 698-703 (2006).
  12. Dupin, E., Sommer, L. Neural crest progenitors and stem cells: from early development to adulthood. Developmental Biology. 366 (1), 83-95 (2012).
  13. Henion, P. D., Weston, J. A. Timing and pattern of cell fate restrictions in the neural crest lineage. Development. 124 (21), 4351-4359 (1997).
  14. Harris, M. L., Erickson, C. A. Lineage specification in neural crest cell pathfinding. Developmental Dynamics. 236 (1), 1-19 (2007).
  15. Luo, R., Gao, J., Wehrle-Haller, B., Henion, P. D. Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development. 130 (2), 321-330 (2003).
  16. Betters, E., Liu, Y., Kjaeldgaard, A., Sundstrom, E., Garcia-Castro, M. I. Analysis of early human neural crest development. Developmental Biology. 344 (2), 578-592 (2010).
  17. Yang, S. Y., Beavan, M., Chau, K. Y., Taanman, J. W., Schapira, A. H. V. A human neural crest stem cell-derived dopaminergic neuronal model recapitulates biochemical abnormalities in GBA1 mutation carriers. Stem Cell Reports. 8 (3), 728-742 (2017).
  18. Ishii, M., et al. A stable cranial neural crest cell line from mouse. Stem Cells and Development. 21 (17), 3069-3080 (2012).
  19. Yumoto, K., et al. TGF-beta-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. Journal of Biological Chemistry. 288 (19), 13467-13480 (2013).
  20. Wang, J., et al. Yap and Taz play a crucial role in neural crest-derived craniofacial development. Development. 143 (3), 504-515 (2016).
  21. Heallen, T., et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 332 (6028), 458-461 (2011).
  22. Wang, J., Martin, J. F. Hippo pathway: An emerging regulator of craniofacial and dental development. Journal of Dental Research. 96 (11), 1229-1237 (2017).
  23. Pan, D. The hippo signaling pathway in development and cancer. Developmental Cell. 19 (4), 491-505 (2010).
  24. Xiao, Y., Leach, J., Wang, J., Martin, J. F. Hippo/Yap signaling in cardiac development and regeneration. Current Treatment Options in Cardiovascular Medicine. 18 (6), 38 (2016).
  25. Yu, F. X., Meng, Z., Plouffe, S. W., Guan, K. L. Hippo pathway regulation of gastrointestinal tissues. Annual Review of Physiology. 77, 201-227 (2015).
  26. Fu, V., Plouffe, S. W., Guan, K. L. The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology. 49, 99-107 (2017).
  27. Moya, I. M., Halder, G. The Hippo pathway in cellular reprogramming and regeneration of different organs. Current Opinion in Cell Biology. 43, 62-68 (2016).
  28. Piccolo, S., Dupont, S., Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiological Reviews. 94 (4), 1287-1312 (2014).
  29. Bauer, D. E., Canver, M. C., Orkin, S. H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. Journal of Visual Experiments : JoVE. (95), e52118 (2015).
  30. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  31. Manderfield, L. J., et al. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development. 142 (17), 2962-2971 (2015).
  32. Hindley, C. J., et al. The Hippo pathway member YAP enhances human neural crest cell fate and migration. Scientific Reports. 6, 23208 (2016).
  33. Nejigane, S., Haramoto, Y., Okuno, M., Takahashi, S., Asashima, M. The transcriptional coactivators Yap and TAZ are expressed during early Xenopus development. International Journal of Developmental Biology. 55 (1), 121-126 (2011).
  34. Grefte, S., Vullinghs, S., Kuijpers-Jagtman, A. M., Torensma, R., Von den Hoff, J. W. Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells in vitro. Biomedical Materials. 7 (5), 055004 (2012).
  35. Kang, B. J., et al. Effect of matrigel on the osteogenic potential of canine adipose tissue-derived mesenchymal stem cells. Journal of Veterinary Medical Science. 74 (7), 827-836 (2012).
  36. Uemura, M., et al. Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. Journal of Neuroscience Research. 88 (3), 542-551 (2010).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved