Determining Spatial Orientation of Rock Layers with the Brunton Compass

Überblick

Source: Laboratory of Alan Lester - University of Colorado Boulder

Most rock units exhibit some form of planar surfaces or linear features. Examples include bedding-, fault-, fracture-, and joint-surfaces, and various forms of foliation and mineral alignment. The spatial orientation of these features form the critical raw data used to constrain models addressing the origin and subsequent deformation of rock units.

Although now over 100 years since its invention and introduction, the Brunton compass (Figure 1) remains a central tool in the modern geologist’s arsenal of field equipment. It is still the primary tool used to generate field data regarding the geometric orientation of planar rock surfaces or linear rock features. These orientation measurements are referred to as strike and dip, and provide the fundamental data for making geologic maps. Furthermore, the Brunton Compass can also function as a traditional compass for location exercises and triangulation. Finally, it can also serve as a pocket transit for measuring angular elevations.

Figure 1
Figure 1. The Brunton compass.

Verfahren

1. Preparation

  1. Check for free needle motion. Verify that the needle is unimpeded when held in the horizontal plane. Some compasses have restrictor buttons that hold the needle in place, and if present, check to see that pushing the restrictor does not move the needle.
  2. Check the “bull’s eye bubble” centering and continuity. This bubble is one of two leveling bubbles and is used to determine horizontality of the compass. The other bubble is used for inclination measurements.
  3. Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ergebnisse

A set of strike and dip data for a non-dipping rock layer has a range of values. The precision of a single measurement is, of course, linked to mechanical compass-errors and the experience of the compass-user. The accuracy of the final analysis is dependent on the uniformity of the natural surface (many nominally “flat-lying” rock layers have some degree of inherent surface undulations) and the number of total measurements taken.

Strike and dip data are initially recorded in field notebooks, and then tran

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Anwendung und Zusammenfassung

Geologists strive to understand the earth in four-dimensions. The goal is to interpret the structure of rocks on the surface, in the subsurface, and through time. Strike and dip information generated by the Brunton Compass is the starting point with which geologists make geologic maps, and then those maps can be used to make cross sectional diagrams, showing the structures in the subsurface (Figure 6).

Understanding rock structures in the three spatial dimensions and also through time provides a window on the physical

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Brunton CompassGeologySpatial OrientationRock LayersField DataStrike And DipCompass ComponentsGeologic MapsMeasurement TechniquePlanar Surface StructureBeddingDip AngleStrike Angle

pringen zu...

0:00

Overview

0:59

Principles of the Brunton Compass

1:49

Setup of the Brunton Compass

2:42

Collection of Measurements

3:52

Results

4:33

Applications

5:18

Summary

Videos aus dieser Sammlung:

article

Now Playing

Determining Spatial Orientation of Rock Layers with the Brunton Compass

Earth Science

25.4K Ansichten

article

Verwendung von Topografischen Karten zur Erstellung von topografischen Profilen

Earth Science

32.0K Ansichten

article

Erstellen eines geologischen Querschnitts

Earth Science

46.9K Ansichten

article

Physikalische Eigenschaften von Mineralien I: Kristalle und Spaltbarkeit

Earth Science

51.6K Ansichten

article

Physikalische Eigenschaften von Mineralien II: Polymineralische Analyse

Earth Science

38.0K Ansichten

article

Magmatisches Eruptivgestein

Earth Science

39.6K Ansichten

article

Magmatisches Intrusivgestein

Earth Science

32.3K Ansichten

article

Ein Überblick über die bGDGT-Biomarker-Analyse für die Paläoklimatologie

Earth Science

5.4K Ansichten

article

Ein Überblick über die Alkenon-Biomarker-Analyse für die Paläothermometrie

Earth Science

7.2K Ansichten

article

Ultraschall-Extraktion von Lipid-Biomarkern aus Sediment

Earth Science

8.3K Ansichten

article

Soxhlet-Extraktion von Lipid-Biomarkern aus Sediment

Earth Science

18.4K Ansichten

article

Extraktion von Biomarkern aus Sedimenten - beschleunigte Lösemittelextraktion

Earth Science

8.5K Ansichten

article

Umwandlung von Fettsäuremethylestern durch Verseifung für die Uk'37-Paläothermometrie

Earth Science

10.1K Ansichten

article

Aufreinigung eines Gesamtlipidextrakts mit Säulenchromatographie

Earth Science

12.4K Ansichten

article

Entfernung von verzweigten und zyklischen Verbindungen durch Harnstoff-Adduktion für die Uk'37-Paläothermometrie

Earth Science

6.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten