Multicopter Aerodynamics: Characterizing Thrust on a Hexacopter

Überblick

Source: Prashin Sharma and Ella M. Atkins, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

Multicopters are becoming popular for a variety of hobby and commercial applications. They are commonly available as quadcopter (four thrusters), hexacopter (six thrusters), and octocopter (eight thrusters) configurations. Here, we describe an experimental process to characterize the multicopter performance. A modular small hexacopter platform providing propulsion unit redundancy is tested. The individual static motor thrust is determined using a dynamometer and varying propeller and input commands. This static thrust is then represented as a function of motor RPM, where the RPM is determined from motor power and control input. The hexacopter is then mounted on a load cell test stand in a 5’ x 7’ low-speed recirculating wind tunnel, and its aerodynamic lift and drag force components were characterized during flight at varying motor signals, free-stream flow speed, and angle of attack.

A hexacopter was selected for this study because of its resilience to motor (propulsion unit) failure, as reported in Clothier1. Along with redundancy in the propulsion system, the selection of high-reliability components is also required for safe flight, particularly for missions over-populated regions. In Ampatis2, the authors discuss the optimal selection of multicopter parts, such as motors, blades, batteries, and electronic speed controllers. Similar research has also been reported in Bershadsky3, which focuses on the proper selection of a propeller system to satisfy mission requirements. Along with redundancy and reliability of components, understanding vehicle performance is also essential to assure flight envelope limits are respected and to select the most efficient design.

Verfahren

This protocol characterizes hexacopter thrust and aerodynamics. For this experiment, we used commercially available, off-the-shelf components for the hexacopter, and the details are provided in Table 2. For the flight controller, we selected an open-source autopilot, Librepilot,9 as it provided flexibility to control individual motor commands issued to the hexacopter.  

The test stand for mounting the load cell and hexacopter was fabricated in-house using laminated plywood

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ergebnisse

Dynamometer Tests

In Figures 5-6, the plots illustrate the variation of thrust and torque, respectively, with increasing motor RPM. From these plots, the minimum motor RPM required for the multicopter to hover can be determined. A plot showing data from multiple propellers can be obtained from Sharma12. Further, the quadratic relations between thrust vs. RPM and moment vs. RPM can be clearly observed, which are described in Equations (1) and (2). Using this

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Anwendung und Zusammenfassung

Here we describe a protocol to characterize the aerodynamic forces acting on a hexacopter. This protocol can be applied to other multirotor configurations directly. Proper characterization of aerodynamic forces is needed to improve control design, understand flight envelope limits, and estimate local wind fields as in Xiang13. The presented protocol for determining motor RPM based on power consumption and throttle command has direct applications to estimate RPM and thrust when low-cost electronic speed control

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Referenzen
  1. Clothier, R.A., and Walker, R.A., “Safety Risk Management of Unmanned Aircraft Systems,” Handbook  of Unmanned Aerial Vehicles, Springer, 2015, pp. 2229–2275.
  2. Ampatis, C., and Papadopoulos, E., “Parametric Design and Optimization of Multi-rotor Aerial Vehicles,” Applications of Mathematics and Informatics in Science and Engineering, Springer, 2014, pp. 1–25. 

  3. Bershadsky, D., Haviland, S., and Johnson, E. N., “Electric Multirotor UAV Propulsion System Sizing for Performance Prediction and Design Optimization,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., 2016.
  4. Bangura, M., Melega, M., Naldi, R., and Mahony, R., “Aerodynamics of Rotor Blades for Quadrotors,” arXiv preprint arXiv:1601.00733, 2016
  5. Ducard, G., and Minh-Duc Hua. "Discussion and Practical Aspects on Control Allocation for a Multi-rotor Helicopter." Conf. on Unmanned Aerial Vehicle in Geomatics, 2011.
  6. Powers C., Mellinger D., Kumar V. “Quadrotor Kinematics and Dynamics” In: Handbook of Unmanned Aerial Vehicles. Springer, 2015
  7. McClamroch, N. Harris. “Steady Aircraft Flight and Performance.” Princeton University Press, 2011.
  8. Quan, Q., “Introduction to Multicopter Design and Control”, Springer Singapore, 2017.
  9. LibrePilot, https://www.librepilot.org/site/index.html
  10. Foster, J. and Hartman, D., “High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction under Off-Nominal Flight Dynamics,” Proc. Air Transportation Integration & Operations (ATIO) Conference, AIAA, 2017. 
  11. Russell, Carl R., et al. "Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles," 2016.
  12. Sharma, P. and Atkins, E., “An Experimental Investigation of Tractor and Pusher Hexacopter Performance,” Proc. AIAA Aviation Conference, AIAA, June 2018. (to appear)
  13. Xiang, X., et al. "Wind Field Estimation through Autonomous Quadcopter Avionics." 35th AIAA/IEEE Digital Avionics Systems Conference (DASC), IEEE, 2016.
  14. Kamel, M., et al. "Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles using Robot Operating System." Robot Operating System (ROS). Springer, Cham, 2017, 3-39.
Tags
MulticoptersAerodynamicsThrustHexacopterRotorsPitch ControlFlight ControlPropellersHoverAttitudeAxesPitch AxisRoll AxisYaw AxisThrust DifferentialForward MovementSide to side MovementYaw ControlHeading Angle

pringen zu...

0:01

Concepts

3:01

Dynamometer Experiment

4:18

Static Text

5:51

Dynamic Thrust Test

7:57

Results

Videos aus dieser Sammlung:

article

Now Playing

Multicopter Aerodynamics: Characterizing Thrust on a Hexacopter

Aeronautical Engineering

9.0K Ansichten

article

Aerodynamisches Verhalten eines Modellflugzeugs: Die DC-6B

Aeronautical Engineering

8.1K Ansichten

article

Charakterisierung von Propellern: Variationen von Pitch, Durchmesser und Blattzahl, und deren Einfluss auf die Leistung

Aeronautical Engineering

26.0K Ansichten

article

Verhalten der Tragflächen: Druckverteilung über einem Clark Y-14-Flügel

Aeronautical Engineering

20.8K Ansichten

article

Clark Y-14 Tragflächenleistung: Einsatz von Hochauftriebsvorrichtungen (Klappen und Vorflügel)

Aeronautical Engineering

13.2K Ansichten

article

Turbulence Sphere-Methode: Bewertung der Strömungsqualität im Windkanal

Aeronautical Engineering

8.6K Ansichten

article

Querzylindrische Strömung: Messung der Druckverteilung und Einschätzung des Strömungswiderstandskoeffizient

Aeronautical Engineering

16.0K Ansichten

article

Analyse einer Düse: Variationen in Machzahl und Druck entlang einer konvergierenden und einer konvergierend-divergierenden Düse

Aeronautical Engineering

37.7K Ansichten

article

Schlieren-Imaging: Eine Technik zur Visualisierung der Eigenschaften von Überschallströmungen

Aeronautical Engineering

11.2K Ansichten

article

Strömungsvisualisierung in einem Wassertunnel: Beobachtung des Vorderkantenwirbels über einem Deltaflügel

Aeronautical Engineering

7.8K Ansichten

article

Surface Dye Flow Visualisierung: Eine qualitative Methode zur Beobachtung von Stromlinien in Überschallströmungen

Aeronautical Engineering

4.8K Ansichten

article

Pitotrohr: Ein Gerät zur Messung der Luftströmungsgeschwindigkeit

Aeronautical Engineering

48.4K Ansichten

article

Konstant-Temperatur-Anemometrie: Ein Werkzeug zur Untersuchung der turbulenten Grenzschichtströmung

Aeronautical Engineering

7.1K Ansichten

article

Druckwandler: Kalibrierung mit einem Pitotrohr

Aeronautical Engineering

8.4K Ansichten

article

Echtzeit-Flugsteuerung: Eingebettete Sensorkalibrierung und Datenerfassung

Aeronautical Engineering

10.0K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten