Anmelden

Numerische Strömungsmechaniksimulationen des Blutflusses in einem zerebralen Aneurysma

Überblick

Quelle: Joseph C. Muskat, Vitaliy L. Rayz, und Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Das Ziel dieses Videos ist es, die jüngsten Fortschritte von Computational Fluid Dynamic (CFD) Simulationen basierend auf patienten- oder tierspezifischen Vaskulaturen zu beschreiben. Hier wurden themenbasierte Gefäßsegmentierungen geschaffen und mit einer Kombination aus Open-Source- und kommerziellen Werkzeugen eine hochauflösende numerische Lösung innerhalb eines Strömungsmodells ermittelt. Zahlreiche Studien haben gezeigt, dass die hämodynamischen Bedingungen innerhalb der Vaskulatur die Entwicklung und das Fortschreiten von Arteriosklerose, Aneurysmen und anderen peripheren Arterienerkrankungen beeinflussen; gleichzeitig sind direkte Messungen des Intraluminaldrucks, der Wandscherspannung (WSS) und der Partikelverweilzeit (PRT) in vivoschwer zu erfassen.

CFD ermöglichen es, solche Variablen nicht-invasiv zu bewerten. Darüber hinaus wird CFD verwendet, um chirurgische Techniken zu simulieren, was Ärzten eine bessere Voraussicht in Bezug auf postoperative Strömungsbedingungen bietet. Zwei Methoden der Magnetresonanztomographie (MRT), die Magnetresonanzangiographie (MRA) mit Flugzeit (TOF-MRA) oder kontrastverstärktem MRA (CE-MRA) und Phasenkontrast (PC-MRT), ermöglichen es uns, Gefäßgeometrien und zeitaufgelöste 3D-Geschwindigkeitsfelder zu erhalten Bzw. TOF-MRA basiert auf der Unterdrückung des Signals aus statischem Gewebe durch wiederholte HF-Impulse, die auf das abgebildete Volumen aufgebracht werden. Ein Signal wird von ungesättigten Spins erhalten, die sich mit dem fließenden Blut in das Volumen bewegen. CE-MRA ist eine bessere Technik für bildgebende Gefäße mit komplexen Umwälzströmen, da es ein Kontrastmittel wie Gadolinium verwendet, um das Signal zu erhöhen.

Unabhängig davon verwendet PC-MRI bipolare Gradienten, um Phasenverschiebungen zu erzeugen, die proportional zur Geschwindigkeit einer Flüssigkeit sind, wodurch zeitaufgelöste Geschwindigkeitsverteilungen zur Verfügung gestellt werden. Während PC-MRI in der Lage ist, Blutflussgeschwindigkeiten bereitzustellen, wird die Genauigkeit dieser Methode durch begrenzte raumzeitliche Auflösung und Geschwindigkeitsdynamikbereich beeinflusst. CFD bietet eine überlegene Auflösung und kann den Bereich der Geschwindigkeiten von Hochgeschwindigkeitsjets bis hin zu langsamen Rezirkulationswirbeln, die in erkrankten Blutgefäßen beobachtet werden, bewerten. Auch wenn die Zuverlässigkeit von CFD von den Modellierungsannahmen abhängt, eröffnet sie die Möglichkeit einer qualitativ hochwertigen, umfassenden Darstellung patientenspezifischer Strömungsfelder, die Diagnose und Behandlung leiten können.

Verfahren

Ein Vorläufer des Tutorials ist die Erstellung eines patientenspezifischen Vaskulaturmodells. In dieser Demo wurden die Werkzeuge Materialise Mimics, 3D Systems Geomagic Design X und Altair HyperMesh verwendet, um ein Tetraedervolumennetz aus MRA-Daten zu generieren.

1. Generieren Sie Gefäß-Mittellinien für das Modell

  1. Öffnen Sie die vmtk-launcher python GUI. Geben Sie im PypePad ein: vmtkcenterlines -ifile [STL-Datei auf dem Desktop gespeichert].stl -ofile [STL name]centerlines.v

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ergebnisse

In dieser Demonstration wurde ein fachspezifisches Modell eines zerebralen Aneurysmus erzeugt und der CFD zur Simulation des Strömungsfeldes verwendet. Durch die Bereitstellung detaillierter Strömungsfunktionen und die Quantifizierung von Hämodynamikkräften, die nicht aus Bilddaten stammen, kann CFD verwendet werden, um 4D-Flow-MRT-Daten mit niedrigerer Auflösung zu erweitern.  Abbildung 1 zeigt, wie CFD eine vollständigere Beschreibung des Flusses in ...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Anwendung und Zusammenfassung

Das hier beschriebene Framework kann für patientenspezifische CFD-Simulationen verwendet werden. Ein hochauflösendes Netz wird verwendet, um 4D-Flow-MRT-Daten mit niedriger Auflösung zu interpolieren. Dadurch werden die Strömungsdaten isoliert und Fehler minimiert, die mit Rauschen außerhalb der Gefäßwand verbunden sind. Durch die Verwendung patientenbasierter Randbedingungen für die Ein- und Auslassströme ist die Simulation in der Lage, die hämodynamischen Bedingungen, die mit MRT abgebildet sind, zu entsprech...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Leerer WertAusgabe

pringen zu...

0:07

Overview

1:20

Principles of Computational Fluid Dynamics

3:15

Generating Vessel Centerlines

4:24

Remapping 4D Flow MRI and Determining the Boundary Conditions

8:09

CFD Simulations

10:22

Results

11:17

Applications

12:17

Summary

Videos aus dieser Sammlung:

article

Now Playing

Numerische Strömungsmechaniksimulationen des Blutflusses in einem zerebralen Aneurysma

Biomedical Engineering

11.5K Ansichten

article

Bildgebung biologischer Proben mit optischer und konfokaler Mikroskopie

Biomedical Engineering

35.5K Ansichten

article

SEM-Bildgebung biologischer Proben

Biomedical Engineering

23.3K Ansichten

article

Biodistribution von Nano-Wirkstoffträgern: Anwendungen von SEM

Biomedical Engineering

9.2K Ansichten

article

Hochfrequenz-Ultraschall-Bildgebung der Bauchaorta

Biomedical Engineering

14.2K Ansichten

article

Abbildung der Dehnungsbelastung eines Bauchaortenaneurysmas

Biomedical Engineering

4.6K Ansichten

article

Photoakustische Tomographie zur Darstellung von Blut und Lipiden in der infrarenalen Aorta

Biomedical Engineering

5.6K Ansichten

article

Kardiale Magnetresonanztomographie

Biomedical Engineering

14.5K Ansichten

article

Nahinfrarot-Fluoreszenz-Bildgebung von Abdominalaortenaneurysmen

Biomedical Engineering

8.2K Ansichten

article

Nichtinvasive Blutdruckmesstechniken

Biomedical Engineering

11.7K Ansichten

article

Erfassung und Analyse eines EKG-Signals (Elektrokardiographie)

Biomedical Engineering

102.0K Ansichten

article

Zugfestigkeit resorbierbarer Biomaterialien

Biomedical Engineering

7.4K Ansichten

article

Mikro-CT-Bildgebung von Maus-Rückenmark

Biomedical Engineering

7.9K Ansichten

article

Visualisierung der Kniegelenksdegeneration nach nicht-invasiver Kreuzbandverletzung bei Ratten

Biomedical Engineering

8.1K Ansichten

article

Kombinierte SPECT- und CT-Bildgebung zur Visualisierung der Herzfunktionalität

Biomedical Engineering

10.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten