El movimiento curvilíneo caracteriza el movimiento de una partícula u objeto a lo largo de una trayectoria curva, especialmente evidente cuando se imagina un automóvil circulando por una carretera sinuosa. Si el automóvil comienza en el punto A, su vector de posición se establece dentro de un marco de referencia fijo, donde la relación entre el vector de posición y su magnitud significa el vector unitario que apunta en la dirección del vector de posición.
A medida que el coche avanza, su posición evoluciona con el tiempo. Cuantificar la velocidad del automóvil implica calcular el tiempo derivativo del vector de posición. En particular, en el marco de referencia fijo, la dirección de los vectores unitarios permanece constante en el tiempo.
El vector velocidad, que expresa la velocidad y la dirección del automóvil, se puede dividir en componentes rectangulares. Al dividir este vector por su magnitud, se revela el vector unitario a lo largo de la dirección de la velocidad del automóvil, similar a la dirección del automóvil en una carretera con curvas.
Además, al tomar el tiempoderivativo del vector velocidad se revela el vector aceleración, que representa cómo cambia la velocidad o dirección del automóvil con el tiempo. Al normalizar este vector de aceleración por su magnitud se obtiene el vector unitario para la aceleración del automóvil, lo que revela la dirección de la aceleración del automóvil. En esencia, estos principios proporcionan un marco conceptual para comprender las complejidades de un automóvil en movimiento curvilíneo.
Del capítulo 12:
Now Playing
Kinematics of a Particle
407 Vistas
Kinematics of a Particle
701 Vistas
Kinematics of a Particle
380 Vistas
Kinematics of a Particle
345 Vistas
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados