Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
Fotólisis de compuestos enjaulados permite la producción de aumentos rápidos y localizados en la concentración de diversos compuestos fisiológicamente activos. Aquí, se muestra cómo obtener el patch-clamp grabaciones en combinación con la fotólisis de AMPc jaula o jaulas Ca para el estudio de la transducción olfativa en disociada del ratón neuronas sensoriales olfativas.
Fotólisis de compuestos enjaulados permite la producción de aumentos rápidos y localizados en la concentración de diversos compuestos fisiológicamente activos 1. Compuestos enjaulados son moléculas hechas fisiológicamente inactivo por una jaula de sustancia química que puede ser rota por un destello de luz ultravioleta. Aquí, se muestra cómo obtener el patch-clamp grabaciones en combinación con la fotólisis de compuestos enjaulados para el estudio de la transducción olfativa en disociada del ratón neuronas sensoriales olfativas. El proceso de transducción olfativa (Figura 1) lleva a cabo en los cilios de las neuronas sensoriales olfativas, que une a los receptores odorantes conduce al aumento de AMPc que se abre de nucleótidos cíclicos-dependientes (GNC) 2 canales. Entrada de Ca a través de los canales de GNC activa Ca-Cl canales activados. Mostramos cómo disociar las neuronas del epitelio olfatorio de ratón 3 y la forma de activar los canales de GNC o Ca-Cl canales activados por fotólisis de AMPc jaula de 4 o 5 jaulas Ca </ Sup>. Nosotros utilizamos una lámpara de flash 6,7 aplicar destellos ultravioleta a la región ciliar a desenjaular cAMP o Ca, mientras patch-clamp grabaciones se toman para medir la corriente en el conjunto de células voltaje-clamp configuración 08/11.
1. Instrumentation
2. Preparing solutions
Dissection
Patch-clamp recording solutions
Extracellular solutions
Intracellular solutions
Always prepare and use caged compound solutions in dim light to avoid degradation of caged compounds from ambient light. Protect containers from light using aluminum foil.
Caged cAMP:
Caged Ca:
We prepare intracellular solutions containing 3 mM DMNP-EDTA5 50% loaded with 1.5 mM Ca.
Notes: During experiments, protect caged compound solutions from light using aluminum foil and keep them on ice. Sterile filter the intracellular solution.
3. Dissociation of mouse olfactory sensory neurons
Animals were handled in accordance with the Italian Guidelines for the Use of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal research (No. 86/609/EEC).
4. Recording
5. Representative results:
You should be able to produce local uncaging of caged cAMP or of caged Ca in the ciliary region of an isolated olfactory sensory neuron and record the current response in the whole-cell voltage-clamp configuration.
Figure 4 shows a typical inward current elicited by a UV flash producing photolysis of caged cAMP, recorded at a voltage of -60 mV in the presence of an extracellular low Ca Ringer’s solution. In this condition the inward current is due to Na entry through CNG channels. The rising phase of the current was fast and was fitted by a single exponential function with a time constant of 3.4 ms.
Figure 5A-B show the responses of another olfactory sensory neuron in low Ca and in Ringer’s solution with 1mM Ca. The rising phase of the current at -60 mV became much slower and multiphasic (Figure 5 A-B). This is due to the action of Ca entering the cilia through CNG channels and activating a secondary Cl current10. The earlier cationic current component, due to activation of CNG, is smaller in 1mM Ca Ringer solution than in low Ca solution because of the block due to the permeating Ca ions that reduce the overall current.
Another way to reduce the increase of Ca in the cilia is to clamp the neuron at +60 mV (Figure 5 C-D). The rising phase of the response due to cAMP uncaging at +60 mV was well described by a single exponential with a time constant of 6.7 ms, indicating the presence of only one current component.
By photoreleasing Ca inside the cilia of an olfactory sensory neuron you should be able to measure a rapidly rising current. This current is carried by Cl ions. Figure 6 A shows inward currents at -50 mV induced by photorelease of caged Ca in response to UV flashes of different intensities. The rising phase of the Ca-activated Cl currents was well described by a single exponential with time constants varying between 3.8 to 5 ms (Figure 6 B).
Figure 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) activating a G protein that in turns activates adenylyl cyclase (ACIII) producing an intracellular increase in cAMP. cAMP opens cyclic nucleotide-gated (CNG) channels allowing the entry of Na and Ca ions. The intracellular Ca increase activates Ca-activated Cl channels. Caged cAMP or caged Ca can be introduced in the cilia diffusing through a patch pipette. A flash of UV light produces photolysis of the caged compound (Modified, with permission, from Pifferi et al. 20062).
Figure 2. The patch-clamp recording and flash photolysis system. The set-up components include a patch-clamp amplifier, a computer, a digitizer, an epifluorescence microscope, a Xenon flash lamp, a CCD camera and a monitor. Blue and violet lines indicate respectively the visible and UV light path.
Figure 3. Xenon flash lamp. (A) Light source used for flash photolysis of caged compounds. (B) Photodiode module used to evaluate the intensity of the light flash. (C) The light guide from the flash lamp was connected to the input of the photodiode and the output was visualized onto an oscilloscope. One of the three available capacitance values (C1, C2 or C3) was selected on the front panel switch of the flash lamp and the voltage was changed turning the knob on the front panel. The output voltage from the photodiode in response to different flash intensities was plotted versus the applied voltage for each capacitance value: C1 = 1000 μF, C2 = 2000 μF, or C3 = 3000 μF. A 600 μm diameter light guide was used.
Figure 4. Patch-clamp recording in response to photolysis of caged cAMP in low extracellular Ca solution. (A) Whole-cell current response induced in an isolated olfactory sensory neuron by photolysis of caged cAMP localized to the cilia. A UV flash was released at the time indicated by the arrow. The holding potential was -60 mV. (B) The current rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.4 ms.
Figure 5. Current responses induced by photolysis of caged cAMP in low Ca and in Ringer solutions. (A) An olfactory sensory neuron was bathed in Ringer solution containing 1 mM Ca or in low Ca solution at the holding potential of -60 mV. A UV flash was released at the time indicated by the arrow. (B) Current responses plotted on an expanded timescale showed a multiphasic rising phase in Ringer, while the rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.5 ms for the response recorded in low Ca solution. (C) Currents responses from the same neuron shown in (A) bathed in Ringer’s solution at the holding potential of -60 and +60 mV. (D) Current responses plotted on an expanded timescale displayed a multiphasic rising phase at -60 mV, whereas at +60 mV the rising phase was well fitted by a single exponential with a time constant of 6.7 ms (dotted line).
Figure 6. Responses to photolysis of caged Ca. (A) Whole-cell currents induced by photolysis of caged Ca at -50 mV. UV flashes were released at the time indicated by the arrow. Flash intensities were varied with neutral density filters. (B) Expanded timescale shows the rapid increase in the current after Ca photorelease. Currents were well fitted by a single exponential function (dotted lines), with time constants of 5, 4.8, 3.8 ms. (Reproduced, with permission, from Boccaccio & Menini, 200710).
Flash fotólisis de compuestos enjaulados en combinación con patch-clamp grabaciones es una técnica útil para obtener saltos rápidos y locales en la concentración de las moléculas fisiológicamente activas, tanto dentro como fuera de las células. Existen varios tipos de compounds1 enjaulados han sido sintetizados, y esta técnica se puede aplicar a diferentes tipos de células, incluyendo células cultivadas que expresan canales iónicos que pueden ser activadas o modulada por fotólisis de algunos de los compues...
No hay conflictos de interés declarado.
Name | Company | Catalog Number | Comments |
Equipo | Empresa | Número de catálogo | Comentarios |
---|---|---|---|
Adaptador de módulo de lámpara de flash a microscopio | Rapp optoelectrónica | FlashCube 70 | |
Aire mesa | TMC | MICRO-63-534 g | |
Digitalizador | Axon Instruments | Digidata 1322A | |
Software de Adquisición de Datos | Axon Instruments | pCLAMP 8 | |
Software de análisis de datos | WaveMetrics | Igor | |
Espejo para el módulo de adaptador | Rapp optoelectrónica | M70/100 | |
Portaelectrodos | Axon Instruments | 1-HL-U | |
Jaula de Faraday | Una medida que se | ||
Cubo de filtro | Olimpo | U-UTH | Filtro de excitación eliminado |
Lámpara de flash | Rapp optoelectrónica | JML-C2 | |
Pinzas Dumont # 55 | Mundial de Instrumentos de Precisión | 14099 | |
Capilares de vidrio | Mundial de Instrumentos de Precisión | PG10165-4 | |
Vidrio placa inferior | Mundial de Instrumentos de Precisión | FD35-100 | |
Iluminador | Olimpo | Resalte 3100 | |
Microscopio invertido | Olimpo | IX70 | |
Micromanipuladores | Luigs y Neumann | SM I | |
Micropipeta Extractor | Narishige | PP-830 | |
Monitor | HesaVision | MTB-01 | |
Filtros de densidad neutra | Omega Optical | varía | |
Objetivo 100X | Zeiss | Fluar 440285 | Ya sea Zeiss o Olympus |
Objetivo 100X | Olimpo | UPLFLN 100XOI2 | Ya sea Zeiss o Olympus |
Óptica UV filtro paso corto | Rapp optoelectrónica | SP400 | |
Patch-clamp amplificador | Axon Instruments | Axopatch 200B | |
Foto Asamblea Diodo | Rapp optoelectrónica | PDA | |
Guía de luz de cuarzo | Rapp optoelectrónica | varía | Nosotros utilizamos 600 m de diámetro |
Alambre de plata | Mundial de Instrumentos de Precisión | AGT1025 | |
Plata baja de pellets | Warner instrumentos | 64-1309 | |
Lámpara de arco de xenón | Rapp optoelectrónica | XBL-JML |
Reactivo | Empresa | Número de catálogo |
---|---|---|
BCMCM-jaula AMPc | Biolog | B016 |
Albúmina de suero bovino (BSA) | Sigma | A8806 |
CaCl2 solución estándar de 0,1 M | Fluka | 21059 |
Caged Ca: DMNP-EDTA | Invitrogen | D6814 |
Cisteína | Sigma | C9768 |
Concanavalina A de tipo V (ConA) | Sigma | C7275 |
CsCl | Sigma | C4036 |
DMSO | Sigma | D8418 |
DNAsa I | Sigma | D4527 |
EDTA | Sigma | E9884 |
EGTA | Sigma | E4378 |
Glucosa | Sigma | G5767 |
HEPES | Sigma | H3375 |
KCl | Sigma | P3911 |
KOH | Sigma | P1767 |
Leupeptina | Sigma | L0649 |
MgCl2 | Fluka | 63020 |
Papaína | Sigma | P3125 |
Poli-L-lisina | Sigma | P1274 |
NaCl | Sigma | S9888 |
NaOH | Sigma | S5881 |
NaPyruvate | Sigma | P2256 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados