Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
Kafesli bileşiklerin Fotoliz çeşitli fizyolojik aktif bileşiklerin konsantrasyonu hızlı ve yerelleştirilmiş artar üretimi sağlar. Burada, kafesli cAMP fotoliz ile kombine veya ayrışmış bir fare koku alma duyusal nöronlarda koku iletimi çalışma için Ca kafesli patch-klemp kayıtları nasıl elde göstermektedir.
Kafesli bileşiklerin Fotoliz hızlı ve yerelleştirilmiş çeşitli fizyolojik olarak aktif bileşikler 1 konsantrasyonu artar üretimi sağlar. Kafesli bileşikler, ultraviyole ışığın bir flash kırılmış olabilir kimyasal bir kafes tarafından fizyolojik olarak inaktif hale moleküllerdir. Burada, ayrışmış fare koku alma duyu nöronlar koku iletimi çalışması için kafesli bileşiklerin fotoliz ile birlikte patch-klemp kayıtları nasıl elde göstermektedir. Reseptörlerine bağlanarak odorant siklik nükleotid kapılı (CNG) kanal 2 açılır cAMP artışına yol açan koku alma duyu nöronlar, kirpikler, koku alma transdüksiyon işlemi (Şekil 1) yer alır . Ca CNG kanallar aracılığıyla giriş aktive Ca-Cl kanalları harekete geçirir. Biz, fare olfaktör epitel 3 ve kafesli cAMP 4 fotoliz veya Ca 5 kafesli CNG kanalları ya da Ca-aktive Cl kanalları nasıl aktif hale getirmek için nöronların nasıl ayırmak </> Destek. Biz tam hücreli gerilim kelepçe yapılandırma 8-11 patch-klemp kayıtları mevcut ölçmek için alınır uncage cAMP veya Ca ultraviyole yanıp söner siliyer bölgeye uygulamak için bir flash lamba 6,7 kullanın.
1. Instrumentation
2. Preparing solutions
Dissection
Patch-clamp recording solutions
Extracellular solutions
Intracellular solutions
Always prepare and use caged compound solutions in dim light to avoid degradation of caged compounds from ambient light. Protect containers from light using aluminum foil.
Caged cAMP:
Caged Ca:
We prepare intracellular solutions containing 3 mM DMNP-EDTA5 50% loaded with 1.5 mM Ca.
Notes: During experiments, protect caged compound solutions from light using aluminum foil and keep them on ice. Sterile filter the intracellular solution.
3. Dissociation of mouse olfactory sensory neurons
Animals were handled in accordance with the Italian Guidelines for the Use of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal research (No. 86/609/EEC).
4. Recording
5. Representative results:
You should be able to produce local uncaging of caged cAMP or of caged Ca in the ciliary region of an isolated olfactory sensory neuron and record the current response in the whole-cell voltage-clamp configuration.
Figure 4 shows a typical inward current elicited by a UV flash producing photolysis of caged cAMP, recorded at a voltage of -60 mV in the presence of an extracellular low Ca Ringer’s solution. In this condition the inward current is due to Na entry through CNG channels. The rising phase of the current was fast and was fitted by a single exponential function with a time constant of 3.4 ms.
Figure 5A-B show the responses of another olfactory sensory neuron in low Ca and in Ringer’s solution with 1mM Ca. The rising phase of the current at -60 mV became much slower and multiphasic (Figure 5 A-B). This is due to the action of Ca entering the cilia through CNG channels and activating a secondary Cl current10. The earlier cationic current component, due to activation of CNG, is smaller in 1mM Ca Ringer solution than in low Ca solution because of the block due to the permeating Ca ions that reduce the overall current.
Another way to reduce the increase of Ca in the cilia is to clamp the neuron at +60 mV (Figure 5 C-D). The rising phase of the response due to cAMP uncaging at +60 mV was well described by a single exponential with a time constant of 6.7 ms, indicating the presence of only one current component.
By photoreleasing Ca inside the cilia of an olfactory sensory neuron you should be able to measure a rapidly rising current. This current is carried by Cl ions. Figure 6 A shows inward currents at -50 mV induced by photorelease of caged Ca in response to UV flashes of different intensities. The rising phase of the Ca-activated Cl currents was well described by a single exponential with time constants varying between 3.8 to 5 ms (Figure 6 B).
Figure 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) activating a G protein that in turns activates adenylyl cyclase (ACIII) producing an intracellular increase in cAMP. cAMP opens cyclic nucleotide-gated (CNG) channels allowing the entry of Na and Ca ions. The intracellular Ca increase activates Ca-activated Cl channels. Caged cAMP or caged Ca can be introduced in the cilia diffusing through a patch pipette. A flash of UV light produces photolysis of the caged compound (Modified, with permission, from Pifferi et al. 20062).
Figure 2. The patch-clamp recording and flash photolysis system. The set-up components include a patch-clamp amplifier, a computer, a digitizer, an epifluorescence microscope, a Xenon flash lamp, a CCD camera and a monitor. Blue and violet lines indicate respectively the visible and UV light path.
Figure 3. Xenon flash lamp. (A) Light source used for flash photolysis of caged compounds. (B) Photodiode module used to evaluate the intensity of the light flash. (C) The light guide from the flash lamp was connected to the input of the photodiode and the output was visualized onto an oscilloscope. One of the three available capacitance values (C1, C2 or C3) was selected on the front panel switch of the flash lamp and the voltage was changed turning the knob on the front panel. The output voltage from the photodiode in response to different flash intensities was plotted versus the applied voltage for each capacitance value: C1 = 1000 μF, C2 = 2000 μF, or C3 = 3000 μF. A 600 μm diameter light guide was used.
Figure 4. Patch-clamp recording in response to photolysis of caged cAMP in low extracellular Ca solution. (A) Whole-cell current response induced in an isolated olfactory sensory neuron by photolysis of caged cAMP localized to the cilia. A UV flash was released at the time indicated by the arrow. The holding potential was -60 mV. (B) The current rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.4 ms.
Figure 5. Current responses induced by photolysis of caged cAMP in low Ca and in Ringer solutions. (A) An olfactory sensory neuron was bathed in Ringer solution containing 1 mM Ca or in low Ca solution at the holding potential of -60 mV. A UV flash was released at the time indicated by the arrow. (B) Current responses plotted on an expanded timescale showed a multiphasic rising phase in Ringer, while the rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.5 ms for the response recorded in low Ca solution. (C) Currents responses from the same neuron shown in (A) bathed in Ringer’s solution at the holding potential of -60 and +60 mV. (D) Current responses plotted on an expanded timescale displayed a multiphasic rising phase at -60 mV, whereas at +60 mV the rising phase was well fitted by a single exponential with a time constant of 6.7 ms (dotted line).
Figure 6. Responses to photolysis of caged Ca. (A) Whole-cell currents induced by photolysis of caged Ca at -50 mV. UV flashes were released at the time indicated by the arrow. Flash intensities were varied with neutral density filters. (B) Expanded timescale shows the rapid increase in the current after Ca photorelease. Currents were well fitted by a single exponential function (dotted lines), with time constants of 5, 4.8, 3.8 ms. (Reproduced, with permission, from Boccaccio & Menini, 200710).
Patch-klemp kayıtları ile birlikte kafesli bileşiklerin Flash fotoliz konsantrasyonu fizyolojik olarak aktif moleküllerin hem iç ve dış hücreleri hızlı ve yerel atlar elde etmek için çok kullanışlı bir tekniktir. Kafesli compounds1 çeşitli türlerde sentezlenen olmuştur ve bu tekniğin, kültür hücreleri aktive olabilir veya bazı kafesli bileşikler 11 fotoliz tarafından modüle iyon kanalları ifade de dahil olmak üzere hücreleri, çeşitli türleri için uygulanabilir.
Çıkar çatışması ilan etti.
Name | Company | Catalog Number | Comments |
Ekipman | Şirket | Katalog numarası | Yorumlar |
---|---|---|---|
Mikroskop için adaptör modülü flaş lambası | Rapp optoelektronik | FlashCube 70 | |
Hava tablo | TMC | MİKRO-g 63-534 | |
Sayısallaştırıcı | Akson Aletleri | Digidata 1322A | |
Veri Toplama Yazılımı | Akson Aletleri | pClamp 8 | |
Veri Analizi Yazılımı | WaveMetrics | Igor | |
Ayna için adaptör modülü | Rapp optoelektronik | M70/100 | |
Elektrod tutucu | Akson Aletleri | 1-HL-U | |
Faraday kafesi | Özel yapılmış | ||
Filtre küp | Olympus | U-MWU | Tahrik olma filtre kaldırıldı |
Flaş lamba | Rapp optoelektronik | JML-C2 | |
Forseps Dumont # 55 | Dünya Hassas Aletler | 14099 | |
Cam kılcal damarlar | Dünya Hassas Aletler | PG10165-4 | |
Cam alt çanak | Dünya Hassas Aletler | FD35-100 | |
Aydınlatıcı | Olympus | Highlight 3100 | |
Ters mikroskop | Olympus | IX70 | |
Mikromanipülatörler | Luigs & Neumann | SM I | |
Mikropipet Çektirme | Narishige | PP-830 | |
Izlemek | HesaVision | MTB-01 | |
Nötr yoğunluk filtreleri | Omega Optik | değişir | |
Amaç 100X | Zeiss | Fluar 440.285 | Ya Zeiss veya Olympus |
Amaç 100X | Olympus | UPLFLN 100XOI2 | Ya Zeiss veya Olympus |
Optik UV shortpass filtresi | Rapp optoelektronik | SP400 | |
Patch-kelepçe amplifikatör | Akson Aletleri | Axopatch 200B | |
Foto Diyot Meclisi | Rapp optoelektronik | PDA | |
Kuvars ışık kılavuzu | Rapp optoelektronik | değişir | Biz 600 mikron çapında |
Gümüş tel | Dünya Hassas Aletler | AGT1025 | |
Gümüş toprak pelet | Warner aletleri | 64-1309 | |
Xenon ark lambası | Rapp optoelektronik | XBL-JML |
Reaktif | Şirket | Katalog numarası |
---|---|---|
BCMCM-kafesli cAMP | Biolog | B016 |
Sığır serum albumini (BSA) | Sigma | A8806 |
CaCl2 standard çözeltisi 0,1 M | Fluka | 21059 |
Kafesli Ca: DMNP-EDTA | Invitrogen | D6814 |
Sistein | Sigma | C9768 |
Concanavalin A tipi V (CONA) | Sigma | C7275 |
CSCL | Sigma | C4036 |
DMSO | Sigma | D8418 |
DNAz I | Sigma | D4527 |
EDTA | Sigma | E9884 |
EGTA | Sigma | E4378 |
Glikoz | Sigma | G5767 |
Hepes | Sigma | H3375 |
KCl | Sigma | P3911 |
KOH | Sigma | P1767 |
Leupeptin | Sigma | L0649 |
MgCl2 | Fluka | 63020 |
Papain | Sigma | P3125 |
Poli-L-lisin | Sigma | P1274 |
NaCl | Sigma | S9888 |
NaOH | Sigma | S5881 |
NaPyruvate | Sigma | P2256 |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır