É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Fotólise de compostos enjaulado permite a produção de aumentos rápidos e localizados na concentração de vários compostos fisiologicamente ativos. Aqui, nós mostramos como obter patch-clamp gravações combinado com fotólise de cAMP gaiola ou enjaulado Ca para o estudo da transdução olfativos em dissociada do mouse neurônios sensoriais olfativos.
Fotólise de compostos enjaulado permite a produção de aumentos rápidos e localizados na concentração de vários compostos fisiologicamente ativos 1. Caged compostos são moléculas feitas fisiologicamente inativo por uma gaiola química que pode ser quebrado por um flash de luz ultravioleta. Aqui, nós mostramos como obter patch-clamp gravações combinado com fotólise de compostos enjaulado para o estudo da transdução olfativos em dissociada do mouse neurônios sensoriais olfativos. O processo de transdução olfativos (Figura 1) ocorre nos cílios dos neurônios sensoriais olfativos, onde odorant ligação aos receptores leva ao aumento de cAMP que abre nucleotídeo cíclico-gated (CNG) canais 2. Ca entrada através de canais CNG ativa os canais de Ca-activated Cl. Mostramos como dissociar os neurônios do epitélio olfativo do mouse 3 e como ativar canais CNG ou canais de Ca-Cl ativado por fotólise de cAMP enjaulado enjaulados Ca 4 ou 5 </ Sup>. Nós usamos uma lâmpada de flash 6,7 aplicar flashes ultravioleta à região ciliar para libertar da gaiola ou cAMP Ca enquanto patch-clamp gravações são tomadas para medir a corrente em toda a configuração de tensão de células-clamp 11/08.
1. Instrumentation
2. Preparing solutions
Dissection
Patch-clamp recording solutions
Extracellular solutions
Intracellular solutions
Always prepare and use caged compound solutions in dim light to avoid degradation of caged compounds from ambient light. Protect containers from light using aluminum foil.
Caged cAMP:
Caged Ca:
We prepare intracellular solutions containing 3 mM DMNP-EDTA5 50% loaded with 1.5 mM Ca.
Notes: During experiments, protect caged compound solutions from light using aluminum foil and keep them on ice. Sterile filter the intracellular solution.
3. Dissociation of mouse olfactory sensory neurons
Animals were handled in accordance with the Italian Guidelines for the Use of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal research (No. 86/609/EEC).
4. Recording
5. Representative results:
You should be able to produce local uncaging of caged cAMP or of caged Ca in the ciliary region of an isolated olfactory sensory neuron and record the current response in the whole-cell voltage-clamp configuration.
Figure 4 shows a typical inward current elicited by a UV flash producing photolysis of caged cAMP, recorded at a voltage of -60 mV in the presence of an extracellular low Ca Ringer’s solution. In this condition the inward current is due to Na entry through CNG channels. The rising phase of the current was fast and was fitted by a single exponential function with a time constant of 3.4 ms.
Figure 5A-B show the responses of another olfactory sensory neuron in low Ca and in Ringer’s solution with 1mM Ca. The rising phase of the current at -60 mV became much slower and multiphasic (Figure 5 A-B). This is due to the action of Ca entering the cilia through CNG channels and activating a secondary Cl current10. The earlier cationic current component, due to activation of CNG, is smaller in 1mM Ca Ringer solution than in low Ca solution because of the block due to the permeating Ca ions that reduce the overall current.
Another way to reduce the increase of Ca in the cilia is to clamp the neuron at +60 mV (Figure 5 C-D). The rising phase of the response due to cAMP uncaging at +60 mV was well described by a single exponential with a time constant of 6.7 ms, indicating the presence of only one current component.
By photoreleasing Ca inside the cilia of an olfactory sensory neuron you should be able to measure a rapidly rising current. This current is carried by Cl ions. Figure 6 A shows inward currents at -50 mV induced by photorelease of caged Ca in response to UV flashes of different intensities. The rising phase of the Ca-activated Cl currents was well described by a single exponential with time constants varying between 3.8 to 5 ms (Figure 6 B).
Figure 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) activating a G protein that in turns activates adenylyl cyclase (ACIII) producing an intracellular increase in cAMP. cAMP opens cyclic nucleotide-gated (CNG) channels allowing the entry of Na and Ca ions. The intracellular Ca increase activates Ca-activated Cl channels. Caged cAMP or caged Ca can be introduced in the cilia diffusing through a patch pipette. A flash of UV light produces photolysis of the caged compound (Modified, with permission, from Pifferi et al. 20062).
Figure 2. The patch-clamp recording and flash photolysis system. The set-up components include a patch-clamp amplifier, a computer, a digitizer, an epifluorescence microscope, a Xenon flash lamp, a CCD camera and a monitor. Blue and violet lines indicate respectively the visible and UV light path.
Figure 3. Xenon flash lamp. (A) Light source used for flash photolysis of caged compounds. (B) Photodiode module used to evaluate the intensity of the light flash. (C) The light guide from the flash lamp was connected to the input of the photodiode and the output was visualized onto an oscilloscope. One of the three available capacitance values (C1, C2 or C3) was selected on the front panel switch of the flash lamp and the voltage was changed turning the knob on the front panel. The output voltage from the photodiode in response to different flash intensities was plotted versus the applied voltage for each capacitance value: C1 = 1000 μF, C2 = 2000 μF, or C3 = 3000 μF. A 600 μm diameter light guide was used.
Figure 4. Patch-clamp recording in response to photolysis of caged cAMP in low extracellular Ca solution. (A) Whole-cell current response induced in an isolated olfactory sensory neuron by photolysis of caged cAMP localized to the cilia. A UV flash was released at the time indicated by the arrow. The holding potential was -60 mV. (B) The current rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.4 ms.
Figure 5. Current responses induced by photolysis of caged cAMP in low Ca and in Ringer solutions. (A) An olfactory sensory neuron was bathed in Ringer solution containing 1 mM Ca or in low Ca solution at the holding potential of -60 mV. A UV flash was released at the time indicated by the arrow. (B) Current responses plotted on an expanded timescale showed a multiphasic rising phase in Ringer, while the rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.5 ms for the response recorded in low Ca solution. (C) Currents responses from the same neuron shown in (A) bathed in Ringer’s solution at the holding potential of -60 and +60 mV. (D) Current responses plotted on an expanded timescale displayed a multiphasic rising phase at -60 mV, whereas at +60 mV the rising phase was well fitted by a single exponential with a time constant of 6.7 ms (dotted line).
Figure 6. Responses to photolysis of caged Ca. (A) Whole-cell currents induced by photolysis of caged Ca at -50 mV. UV flashes were released at the time indicated by the arrow. Flash intensities were varied with neutral density filters. (B) Expanded timescale shows the rapid increase in the current after Ca photorelease. Currents were well fitted by a single exponential function (dotted lines), with time constants of 5, 4.8, 3.8 ms. (Reproduced, with permission, from Boccaccio & Menini, 200710).
Flash fotólise de compostos enjaulado combinado com patch-clamp gravações é uma técnica útil para obter saltos rápidos e local da concentração de moléculas ativas fisiologicamente dentro e fora das células. Vários tipos de compounds1 enjaulado foram sintetizados, e esta técnica pode ser aplicada a vários tipos de células, incluindo células cultivadas expressar canais iônicos que podem ser ativadas ou moduladas por fotólise de alguns dos compostos disponíveis enjaulado 11.
Não há conflitos de interesse declarados.
Name | Company | Catalog Number | Comments |
Equipamento | Companhia | Número de catálogo | Comentários |
---|---|---|---|
Adaptador módulo da lâmpada de flash para microscópio | Rapp optoeletrônicos | FlashCube 70 | |
Air tabela | TMC | MICRO-g 63-534 | |
Digitizer | Axon Instruments | Digidata 1322A | |
Aquisição de Dados Software | Axon Instruments | pClamp 8 | |
Software Análise de dados | WaveMetrics | Igor | |
Espelho para módulo adaptador | Rapp optoeletrônicos | M70/100 | |
Suporte do eletrodo | Axon Instruments | 1-HL-U | |
Gaiola de Faraday | Feitos | ||
Cubo de filtro | Olimpo | U-UTH | Filtro de excitação removido |
Lâmpada de flash | Rapp optoeletrônicos | JML-C2 | |
Fórceps Dumont # 55 | Precision Instruments mundo | 14099 | |
Capilares de vidro | Precision Instruments mundo | PG10165-4 | |
Prato fundo de vidro | Precision Instruments mundo | FD35-100 | |
Iluminador | Olimpo | Destaque 3100 | |
Microscópio invertido | Olimpo | IX70 | |
Micromanipuladores | Luigs & Neumann | SM eu | |
Micropipeta Puller | Narishige | PP-830 | |
Monitor | HesaVision | MTB-01 | |
Os filtros de densidade neutra | Omega Optical | varia | |
Objetivo 100X | Zeiss | Fluar 440285 | Ou Zeiss ou Olympus |
Objetivo 100X | Olimpo | UPLFLN 100XOI2 | Ou Zeiss ou Olympus |
Ópticos UV shortpass filtro | Rapp optoeletrônicos | SP400 | |
Amplificador de patch-clamp | Axon Instruments | Axopatch 200B | |
Foto de díodo | Rapp optoeletrônicos | PDA | |
Guia de luz de quartzo | Rapp optoeletrônicos | varia | Usamos 600 mM de diâmetro |
Fio de prata | Precision Instruments mundo | AGT1025 | |
Prata chão pellet | Warner instrumentos | 64-1309 | |
Xenon arco da lâmpada | Rapp optoeletrônicos | XBL-JML |
Reagente | Companhia | Número de catálogo |
---|---|---|
BCMCM gaiolas cAMP | Biolog | B016 |
Albumina de soro bovino (BSA) | Sigma | A8806 |
CaCl2 solução padrão 0,1 M | Fluka | 21059 |
Ca Caged: DMNP-EDTA | Invitrogen | D6814 |
Cisteína | Sigma | C9768 |
Concanavalina A V tipo (ConA) | Sigma | C7275 |
CsCl | Sigma | C4036 |
DMSO | Sigma | D8418 |
DNAse I | Sigma | D4527 |
EDTA | Sigma | E9884 |
EGTA | Sigma | E4378 |
Glicose | Sigma | G5767 |
HEPES | Sigma | H3375 |
KCl | Sigma | P3911 |
KOH | Sigma | P1767 |
Leupeptin | Sigma | L0649 |
MgCl2 | Fluka | 63020 |
Papaína | Sigma | P3125 |
Poli-L-lisina | Sigma | P1274 |
NaCl | Sigma | S9888 |
NaOH | Sigma | S5881 |
NaPyruvate | Sigma | P2256 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados