Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
La photolyse de composés en cage permet la production d'une augmentation rapide et localisé dans la concentration de divers composés physiologiquement actifs. Ici, nous montrons comment obtenir des enregistrements de patch-clamp combinée avec la photolyse de l'AMPc en cage ou en cage Ca pour l'étude de la transduction olfactive chez la souris dissocié neurones sensoriels olfactifs.
La photolyse de composés en cage permet la production d'une augmentation rapide et localisé dans la concentration de divers composés physiologiquement actifs 1. Caged composés sont des molécules composées physiologiquement inactive par une cage chimique qui peut être rompu par un éclair de lumière ultraviolette. Ici, nous montrons comment obtenir des enregistrements de patch-clamp combinée avec la photolyse de composés en cage pour l'étude de la transduction olfactive chez la souris dissocié neurones sensoriels olfactifs. Le processus de transduction olfactive (Figure 1) se déroule dans les cils olfactifs des neurones sensoriels, où se liant aux récepteurs odorants conduit à l'augmentation de l'AMPc qui ouvre des nucléotides cycliques-dépendants (CNG) des canaux 2. D'entrée de Ca par les canaux CNG active les canaux Cl Ca-activé. Nous montrons comment dissocier les neurones de l'épithélium olfactif de souris 3 et comment activer les canaux CNG ou Ca-Cl activé les canaux par photolyse de l'AMPc en cage en cage 4 ou 5 Ca </ Sup>. Nous utilisons une lampe flash 6,7 à appliquer clignote ultraviolets pour la région ciliaire à uncage AMPc ou Ca alors de patch-clamp enregistrements sont prises pour mesurer le courant dans la cellule entière voltage-clamp de configuration 8-11.
1. Instrumentation
2. Preparing solutions
Dissection
Patch-clamp recording solutions
Extracellular solutions
Intracellular solutions
Always prepare and use caged compound solutions in dim light to avoid degradation of caged compounds from ambient light. Protect containers from light using aluminum foil.
Caged cAMP:
Caged Ca:
We prepare intracellular solutions containing 3 mM DMNP-EDTA5 50% loaded with 1.5 mM Ca.
Notes: During experiments, protect caged compound solutions from light using aluminum foil and keep them on ice. Sterile filter the intracellular solution.
3. Dissociation of mouse olfactory sensory neurons
Animals were handled in accordance with the Italian Guidelines for the Use of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal research (No. 86/609/EEC).
4. Recording
5. Representative results:
You should be able to produce local uncaging of caged cAMP or of caged Ca in the ciliary region of an isolated olfactory sensory neuron and record the current response in the whole-cell voltage-clamp configuration.
Figure 4 shows a typical inward current elicited by a UV flash producing photolysis of caged cAMP, recorded at a voltage of -60 mV in the presence of an extracellular low Ca Ringer’s solution. In this condition the inward current is due to Na entry through CNG channels. The rising phase of the current was fast and was fitted by a single exponential function with a time constant of 3.4 ms.
Figure 5A-B show the responses of another olfactory sensory neuron in low Ca and in Ringer’s solution with 1mM Ca. The rising phase of the current at -60 mV became much slower and multiphasic (Figure 5 A-B). This is due to the action of Ca entering the cilia through CNG channels and activating a secondary Cl current10. The earlier cationic current component, due to activation of CNG, is smaller in 1mM Ca Ringer solution than in low Ca solution because of the block due to the permeating Ca ions that reduce the overall current.
Another way to reduce the increase of Ca in the cilia is to clamp the neuron at +60 mV (Figure 5 C-D). The rising phase of the response due to cAMP uncaging at +60 mV was well described by a single exponential with a time constant of 6.7 ms, indicating the presence of only one current component.
By photoreleasing Ca inside the cilia of an olfactory sensory neuron you should be able to measure a rapidly rising current. This current is carried by Cl ions. Figure 6 A shows inward currents at -50 mV induced by photorelease of caged Ca in response to UV flashes of different intensities. The rising phase of the Ca-activated Cl currents was well described by a single exponential with time constants varying between 3.8 to 5 ms (Figure 6 B).
Figure 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) activating a G protein that in turns activates adenylyl cyclase (ACIII) producing an intracellular increase in cAMP. cAMP opens cyclic nucleotide-gated (CNG) channels allowing the entry of Na and Ca ions. The intracellular Ca increase activates Ca-activated Cl channels. Caged cAMP or caged Ca can be introduced in the cilia diffusing through a patch pipette. A flash of UV light produces photolysis of the caged compound (Modified, with permission, from Pifferi et al. 20062).
Figure 2. The patch-clamp recording and flash photolysis system. The set-up components include a patch-clamp amplifier, a computer, a digitizer, an epifluorescence microscope, a Xenon flash lamp, a CCD camera and a monitor. Blue and violet lines indicate respectively the visible and UV light path.
Figure 3. Xenon flash lamp. (A) Light source used for flash photolysis of caged compounds. (B) Photodiode module used to evaluate the intensity of the light flash. (C) The light guide from the flash lamp was connected to the input of the photodiode and the output was visualized onto an oscilloscope. One of the three available capacitance values (C1, C2 or C3) was selected on the front panel switch of the flash lamp and the voltage was changed turning the knob on the front panel. The output voltage from the photodiode in response to different flash intensities was plotted versus the applied voltage for each capacitance value: C1 = 1000 μF, C2 = 2000 μF, or C3 = 3000 μF. A 600 μm diameter light guide was used.
Figure 4. Patch-clamp recording in response to photolysis of caged cAMP in low extracellular Ca solution. (A) Whole-cell current response induced in an isolated olfactory sensory neuron by photolysis of caged cAMP localized to the cilia. A UV flash was released at the time indicated by the arrow. The holding potential was -60 mV. (B) The current rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.4 ms.
Figure 5. Current responses induced by photolysis of caged cAMP in low Ca and in Ringer solutions. (A) An olfactory sensory neuron was bathed in Ringer solution containing 1 mM Ca or in low Ca solution at the holding potential of -60 mV. A UV flash was released at the time indicated by the arrow. (B) Current responses plotted on an expanded timescale showed a multiphasic rising phase in Ringer, while the rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.5 ms for the response recorded in low Ca solution. (C) Currents responses from the same neuron shown in (A) bathed in Ringer’s solution at the holding potential of -60 and +60 mV. (D) Current responses plotted on an expanded timescale displayed a multiphasic rising phase at -60 mV, whereas at +60 mV the rising phase was well fitted by a single exponential with a time constant of 6.7 ms (dotted line).
Figure 6. Responses to photolysis of caged Ca. (A) Whole-cell currents induced by photolysis of caged Ca at -50 mV. UV flashes were released at the time indicated by the arrow. Flash intensities were varied with neutral density filters. (B) Expanded timescale shows the rapid increase in the current after Ca photorelease. Currents were well fitted by a single exponential function (dotted lines), with time constants of 5, 4.8, 3.8 ms. (Reproduced, with permission, from Boccaccio & Menini, 200710).
Photolyse de composés en cage combiné avec des enregistrements de patch-clamp est une technique utile pour obtenir des sauts rapides et locales de la concentration de molécules actives physiologiquement à l'intérieur et l'extérieur des cellules. Plusieurs types de composés1 cage ont été synthétisés, et cette technique peut être appliquée à divers types de cellules, y compris les cellules en culture exprimant les canaux ioniques qui peuvent être activées ou modulée par photolyse de certains des c...
Pas de conflits d'intérêt déclarés.
Name | Company | Catalog Number | Comments |
Équipement | Société | Numéro de catalogue | Commentaires |
---|---|---|---|
Adapter Module lampe flash au microscope | Rapp optoélectroniques | FlashCube 70 | |
Air de table | TMC | Micro-g 63-534 | |
Digitizer | Axon Instruments | Digidata 1322A | |
Logiciel d'acquisition de données | Axon Instruments | pClamp 8 | |
Logiciel d'analyse de données | WaveMetrics | Igor | |
Miroir pour module adaptateur | Rapp optoélectroniques | M70/100 | |
Porte-électrode | Axon Instruments | 1-HL-U | |
Faraday cage | Custom made | ||
Cube de filtre | Olympus | U-UTH | Filtre d'excitation enlevés |
Lampe flash | Rapp optoélectroniques | JML-C2 | |
Pince Dumont # 55 | Instruments de précision du monde | 14099 | |
Capillaires en verre | Instruments de précision du monde | PG10165-4 | |
Plat à fond de verre | Instruments de précision du monde | FD35-100 | |
Illuminateur | Olympus | Highlight 3100 | |
Microscope inversé | Olympus | IX70 | |
Micromanipulateurs | Luigs & Neumann | SM I | |
Micropipette Puller | Narishige | PP-830 | |
Moniteur | HesaVision | MTB-01 | |
Les filtres neutres | Omega Optical | varie | |
Objectif 100X | Zeiss | Fluar 440285 | Soit Zeiss ou Olympus |
Objectif 100X | Olympus | UPLFLN 100XOI2 | Soit Zeiss ou Olympus |
Optique UV shortpass filtre | Rapp optoélectroniques | SP400 | |
Amplificateur de patch-clamp | Axon Instruments | Axopatch 200B | |
Assemblée diode photo | Rapp optoélectroniques | PDA | |
Quartz guide de lumière | Rapp optoélectroniques | varie | Nous utilisons 600 um de diamètre |
Fil d'Argent | Instruments de précision du monde | AGT1025 | |
Argent-chaussée granulés | Warner instruments | 64-1309 | |
Xénon lampe à arc | Rapp optoélectroniques | XBL JML |
Réactif | Société | Numéro de catalogue |
---|---|---|
BCMCM-cage AMPc | BioLog | B016 |
Albumine sérique bovine (BSA) | Sigma | A8806 |
CaCl2 0,1 M solution standard | Fluka | 21059 |
Caged Ca: DMNP-EDTA | Invitrogen | D6814 |
Cystéine | Sigma | C9768 |
Concanavaline A de type V (ConA) | Sigma | C7275 |
CsCl | Sigma | C4036 |
DMSO | Sigma | D8418 |
DNAse I | Sigma | D4527 |
EDTA | Sigma | E9884 |
EGTA | Sigma | E4378 |
Le glucose | Sigma | G5767 |
HEPES | Sigma | H3375 |
KCl | Sigma | P3911 |
KOH | Sigma | P1767 |
Leupeptine | Sigma | L0649 |
MgCl2 | Fluka | 63020 |
La papaïne | Sigma | P3125 |
Poly-L-lysine | Sigma | P1274 |
NaCl | Sigma | S9888 |
NaOH | Sigma | S5881 |
NaPyruvate | Sigma | P2256 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon