Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
This article describes a method for creating a mechanical vessel injury in zebrafish embryos. This injury model provides a platform for studying hemostasis, injury-related inflammation, and wound healing in an organism ideally suited for real-time microscopy.
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.
Zebrafish have been used extensively to study a variety of topics in vascular biology, including vascular development, angiogenesis, and hematopoietic development and pathology1-3. Embryos develop a functional circulation as well as leukocytes and other components of the innate immune system by 1 day post fertilization (dpf) 1,4,5. The conservation of the inflammatory and leukocyte response to injury has made the zebrafish embryo an informative model for such diverse inflammatory processes as tuberculous infection, enterocolitis, and tissue regeneration6-9. Zebrafish embryos have been used to study injury-related inflammation particularly in the context of epithelial wounding and the neutrophil response10,11. Injury to the embryo results in a highly conserved cellular response from cells at the injury site and the innate immune cells recruited to respond to the injury and regulate its resolution11,12. Other injury models have used focused laser pulses to spatially localize injury to specific cell types including neurons, muscle cells, and cardiomyocytes13-15.
Zebrafish embryos have been used as a model to study hemostasis and thrombosis in conditions of pharmacological and genetic manipulation, using both mechanical and laser-induced thrombus formation16-19. Components of the coagulation cascade appear to be well-conserved and transgenics have allowed for detailed studies of thrombocyte and fibrin deposition at the site of coagulation17,20,21. The procedure presented in this paper complements these methods by providing a system for studying mechanical vessel injury resulting in vessel breach, thrombus formation and resolution, and vessel repair.
NOTA: Procedimientos utilizando el pez cebra fueron aprobados por Institutional Animal Care de UCSF y el empleo.
1. Preparación de Herramientas
2. Preparación de embriones de pez cebra para Lesiones
3. Recipiente Mecánica Lesión de embriones
4. Análisis de la hemostasia
5. Análisis de Curación de Heridas
Lesión de los vasos mecánica se realizó el 2 de fdd embriones (Figura 2A - C). Lesión resulta en una respuesta rápida y fiable de la coagulación como medidas por el tiempo hasta el cese de la hemorragia (Figura 2D). Para determinar si o no diferencias en la respuesta de coagulación se podrían medir, la hirudina anticoagulante se administró a los embriones mediante inyección en el conducto de Cuvier inmediatamente antes de heridas (5-10 nl de 1 unidad por l hir...
El pez cebra se han utilizado con éxito como un modelo para diferentes tipos de heridas incluyendo lesiones láser 13-15, trombosis inducida por láser 16, y epitelial hiriendo a 10. Se presenta un método de la herida mecánico que es fácil de ejecutar y produce una lesión controlada en un modelo in vivo que es altamente susceptible a la microscopía en tiempo real. Lesión resulta en una respuesta hemostática rápido y medible y un programa de reparación de herid...
The authors declare that they have no competing financial interests.
The authors would like to thank Drs. Stephen Wilson and Lisa Wilsbacher for helpful discussions. This work was supported in part by NIH HL054737.
Name | Company | Catalog Number | Comments |
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Minutia Pins | Fine Science Tools | 26002-10 | Tip diameter 0.0125 mm, rod diameter 0.1 mm |
Pin Holder | Fine Science Tools | 26016-12 | |
Dumont #5 Fine Tip Forceps | Fine Science Tools | 11254-20 | |
Glass Depression Slide | Aquatic Eco-Systems | M30 | |
Low Melting Agarose | Lonza | 50081 | Preheated to 42 º C |
N-Phenylthiourea (PTU) | Sigma Aldrich | P7629 | |
3-aminobenzoic acid (Tricaine) | Sigma Aldrich | E10521 | |
Hirudin | Sigma Aldrich | H7016 | |
Glass bottom imaging dishes | Mattek | P35G-1.5-14-C | |
Dissecting microscope | Olympus | SZH10 | |
Fluorescence microscope | Zeiss | Axio Observer | |
Aquarium salts | Instant Ocean | ||
Insulin syringe with 28G1/2 needle | Becton Dickinson | 329461 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados