Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This article describes a method for creating a mechanical vessel injury in zebrafish embryos. This injury model provides a platform for studying hemostasis, injury-related inflammation, and wound healing in an organism ideally suited for real-time microscopy.
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.
Zebrafish have been used extensively to study a variety of topics in vascular biology, including vascular development, angiogenesis, and hematopoietic development and pathology1-3. Embryos develop a functional circulation as well as leukocytes and other components of the innate immune system by 1 day post fertilization (dpf) 1,4,5. The conservation of the inflammatory and leukocyte response to injury has made the zebrafish embryo an informative model for such diverse inflammatory processes as tuberculous infection, enterocolitis, and tissue regeneration6-9. Zebrafish embryos have been used to study injury-related inflammation particularly in the context of epithelial wounding and the neutrophil response10,11. Injury to the embryo results in a highly conserved cellular response from cells at the injury site and the innate immune cells recruited to respond to the injury and regulate its resolution11,12. Other injury models have used focused laser pulses to spatially localize injury to specific cell types including neurons, muscle cells, and cardiomyocytes13-15.
Zebrafish embryos have been used as a model to study hemostasis and thrombosis in conditions of pharmacological and genetic manipulation, using both mechanical and laser-induced thrombus formation16-19. Components of the coagulation cascade appear to be well-conserved and transgenics have allowed for detailed studies of thrombocyte and fibrin deposition at the site of coagulation17,20,21. The procedure presented in this paper complements these methods by providing a system for studying mechanical vessel injury resulting in vessel breach, thrombus formation and resolution, and vessel repair.
NOTE: Procedures using zebrafish were approved by UCSF's Institutional Animal Care and Use Committee.
1. Preparation of Tools
2. Preparation of Zebrafish Embryos for Injury
3. Mechanical Vessel Injury of Embryos
4. Analysis of Hemostasis
5. Analysis of Wound Healing
Mechanical vessel injury was performed on 2 dpf embryos (Figure 2A-C). Injury results in a rapid and reliable coagulation response as measured by time to cessation of bleeding (Figure 2D). To determine whether or not differences in the coagulation response could be measured, the anticoagulant hirudin was administered to the embryos by injection into the Duct of Cuvier immediately prior to wounding (5-10 nl of 1 unit per µl hirudin dissolved in water)(for demonstrati...
Zebrafish have been used successfully as a model for different types of wounds including laser injury13-15, laser-induced thrombosis16, and epithelial wounding10. We report a method of mechanical wounding that is simple to execute and produces a controlled injury in an in vivo model that is highly amenable to real-time microscopy. Injury results in a rapid and measurable hemostatic response and a reproducible wound repair program that can be monitored using video and timelapse mi...
The authors declare that they have no competing financial interests.
The authors would like to thank Drs. Stephen Wilson and Lisa Wilsbacher for helpful discussions. This work was supported in part by NIH HL054737.
Name | Company | Catalog Number | Comments |
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Minutia Pins | Fine Science Tools | 26002-10 | Tip diameter 0.0125 mm, rod diameter 0.1 mm |
Pin Holder | Fine Science Tools | 26016-12 | |
Dumont #5 Fine Tip Forceps | Fine Science Tools | 11254-20 | |
Glass Depression Slide | Aquatic Eco-Systems | M30 | |
Low Melting Agarose | Lonza | 50081 | Preheated to 42 º C |
N-Phenylthiourea (PTU) | Sigma Aldrich | P7629 | |
3-aminobenzoic acid (Tricaine) | Sigma Aldrich | E10521 | |
Hirudin | Sigma Aldrich | H7016 | |
Glass bottom imaging dishes | Mattek | P35G-1.5-14-C | |
Dissecting microscope | Olympus | SZH10 | |
Fluorescence microscope | Zeiss | Axio Observer | |
Aquarium salts | Instant Ocean | ||
Insulin syringe with 28G1/2 needle | Becton Dickinson | 329461 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone