Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Aquí, presentamos un protocolo para detectar especies totales de oxígeno reactivo celular (ROS) usando 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Este método puede visualizar la localización de ROS celular en células adherentes con un microscopio de fluorescencia y cuantificar la intensidad ROS con un lector de placas de fluorescencia. Este protocolo es simple, eficiente y rentable.

Resumen

El estrés oxidativo es un evento importante en condiciones fisiológicas y patológicas. En este estudio, demostramos cómo cuantificar el estrés oxidativo midiendo las especies de oxígeno reactivo total (ROS) utilizando 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) tinción en líneas celulares de cáncer colorrectal como ejemplo. Este protocolo describe los pasos detallados, incluida la preparación de la solución DCFH-DA, la incubación de células con solución DCFH-DA y la medición de la intensidad normalizada. La tinción DCFH-DA es una forma sencilla y rentable de detectar ROS en las células. Se puede utilizar para medir la generación de ROS después de un tratamiento químico o modificaciones genéticas. Por lo tanto, es útil para determinar el estrés oxidativo celular sobre el estrés ambiental, proporcionando pistas para estudios mecanicistas.

Introducción

Tres especies principales de oxígeno reactivo (ROS) producidas por el metabolismo celular que son de significado fisiológico son anión superóxido, radical hidroxilo, y peróxido de hidrógeno1. A bajas concentraciones, participan en procesos celulares fisiológicos, pero a altas concentraciones tienen efectos adversos en las vías de señalización celular1. Nuestro cuerpo ha desarrollado sistemas antioxidantes, que son eficaces contra el exceso de ROS. Sin embargo, el estrés oxidativo puede ocurrir cuando ROS abruma la capacidad desintoxicante de nuestro cuerpo, lo que contribuye a muchas condiciones patológicas, incluyendo inflamación, cáncer, y enfermedad neurodegenerativa2,,3,4. El propósito de este método es determinar el total de ROS celular en las células adherentes utilizando 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) tinción. La razón es que la oxidación de DCFH-DA a 2'-7'diclorofluoresceína (DCF) se ha utilizado ampliamente para la detección total de ROS, incluidos los radicales hidroxilo (•OH) y el dióxido de nitrógeno (•NO2). Mecánicamente, DCFH-DA es tomado por células donde la esterasa celular se corta fuera de los grupos de acetil, lo que resulta en DCFH. La oxidación de DCFH por ROS convierte la molécula a DCF, que emite fluorescencia verde a una longitud de onda de excitación de 485 nm y una longitud de onda de emisión de 530 nm. En comparación con la detección de fluorescencia con citometría de flujo y otros métodos alternativos5,las ventajas de este método utilizando un microscopio de fluorescencia y un lector de placas son que produce imágenes fluorescentes claramente visibles, y es fácil de realizar, eficiente y rentable. Este método ha sido ampliamente utilizado para detectar ROS celular para el estudio de diversas condiciones6,7,8. Este protocolo se utiliza para detectar ROS total en células adherentes. El uso de este método para detectar ROS en las células de suspensión puede necesitar algunas modificaciones.

Protocolo

1. Siembra celular

  1. Semilla 2 x 105 células de cáncer colorrectal HCT116 por pozo en una placa de 24 pozos y mantener las células en el medio águila modificado (DMEM) de Dulbecco durante la noche a 37 oC.
  2. Sustituya el medio de cultivo por o sin sulfato ferroso de 100 m (FS) o doxorubicina (DOX) de 10 oM que contenga medio e incubar durante 24 h.

2. Preparación de la solución DCFH-DA

  1. Disolver 4,85 mg de DCFH-DA en 1 ml de dimetilsólfóxido (DMSO) para realizar una solución de 10 mM en stock.
  2. Diluir la solución de stock con DMEM precalegado en una solución de trabajo de 10 m justo antes de añadirla a los pozos.
  3. Vortex la solución de trabajo para 10 s.

3. Tinción DCFH-DA

  1. Retire el medicamento que contiene el medio y lávelo una vez con DMEM.
  2. Añadir 500 l de la solución de trabajo DCFH-DA en cada pocóptica e incubar a 37 oC durante 30 min.
  3. Quite la solución de trabajo DCFH-DA. Lavar una vez con DMEM y 2x con 1 solución salina tamponada por fosfato (PBS).
  4. Añadir 500 l de 1x PBS a cada pocól.

4. Adquisición de imágenes y medición de intensidad

  1. Tome imágenes fluorescentes representativas para cada pozo utilizando el canal de proteína fluorescente verde (GFP) en un microscopio de fluorescencia.
  2. Después de tomar imágenes, retire pbS y agregue 200 ml de búfer de ensayo de radioinmunoprecipitación (RIPA) a cada pocól.
  3. Incubar sobre hielo durante 5 min, luego recoger el lysate celular en tubos de 1,5 ml.
  4. Centrifugar a 21.130 x g durante 10 min a 4oC.
  5. Transfiera 100 l del sobrenadante a una placa negra de 96 pozos y mida la intensidad de la fluorescencia utilizando una fluorescencia de un lector de microplacas a una longitud de onda de excitación de 485 nm y una longitud de onda de emisión de 530 nm.
  6. Transfiera 1 l del sobrenadante a una placa transparente de 96 pocillos que contenga 100 l de solución de ensayo de proteína 1x para medir la concentración de proteínas utilizando el ensayo de Bradford9.
  7. Normalizar las intensidades de fluorescencia con concentraciones de proteínas.

Resultados

Las células cancerosas colorrectales HCT116 fueron tratadas con 100 m FS o 10 m DOX para inducir estrés oxidativo7. Como se muestra en la Figura 1,la fluorescencia verde se incrementó drásticamente tanto por FS como en DOX como se esperaba. Para cuantificar el cambio de intensidad relativa, las células fueronizadas después de tomar imágenes y normalizadas con concentraciones de proteínas. La intensidad de fluorescencia cuantificada se incrementó significativa...

Discusión

El protocolo experimental descrito aquí es fácilmente reproducible para medir el total celular ROS. Los pasos críticos incluyen hacer que la solución DCFH-DA sea fresca y evitar la exposición a la luz, minimizar las perturbaciones del estado de las células y el lavado extenso de PBS justo antes de tomar imágenes. Para la preparación de la solución de trabajo DCFH-DA, la solución de stock debe añadirse a DMEM precalentado justo antes de añadir en la placa de 24 pozos. La razón es que las soluciones antiguas q...

Divulgaciones

Los autores no tienen nada que revelar.

Agradecimientos

Este trabajo fue apoyado en parte por los Institutos Nacionales de Salud (K01DK114390), una Beca de Becas de Investigación de la Sociedad Americana contra el Cáncer (RSG-18-050-01-NEC), un Proyecto Piloto de Investigación Subvención del Programa de Firma de Salud Ambiental y Superfundo de la Universidad de Nuevo México (P42 ES025589), un Premio al Proyecto Piloto de Recursos Compartidos y un Premio al Proyecto Piloto de Apoyo al Programa de Investigación del Centro Oncológico Integral de la UNM (P30CA118100) , y un nuevo premio de investigador de los Fondos De Investigación Sanitaria Dedicados de la Facultad de Medicina de la Universidad de Nuevo México.

Materiales

NameCompanyCatalog NumberComments
2',7'-Dichlorofluorescein diacetateCayman Chemical, Ann Arbor, MI20656
Doxorubicin hydrochlorideTCI America, Portland, ORD4193-25MG
Dulbecco's Modified Eagle MediumCorning, Corning, NY45000-304
Ferrous Sulfate HeptahydrateVWR, Radnor, PA97061-542
Invitrogen EVOS FL Auto Imaging SystemThermo Fisher Scientific Waltham, MAAMAFD1000or any other fluorescence microscope
Protein assay Bradford solutionBio-Rad, Hercules, CA5000001
SpectraMax M2 Microplate ReaderMolecular Devices, Radnor, PA89429-532or any other fluorescence microplate reader

Referencias

  1. Birben, E., et al. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 5 (1), 9-19 (2012).
  2. Kim, G. H., et al. The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology. 24 (4), 325-340 (2015).
  3. Sullivan, L. B., Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism. 2, 17 (2014).
  4. Formentini, L., et al. Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Reports. 19 (6), 1202-1213 (2017).
  5. Rakotoarisoa, M., et al. Curcumin- and Fish Oil-Loaded Spongosome and Cubosome Nanoparticles with Neuroprotective Potential against H2O2-Induced Oxidative Stress in Differentiated Human SH-SY5Y Cells. ACS Omega. 4 (2), 3061-3073 (2019).
  6. Mateen, S., et al. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis. PLoS One. 11 (4), (2016).
  7. Kim, H., et al. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicology and Applied Pharmacology. 374, 77-85 (2019).
  8. Wang, S. H., et al. Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC Complementary and Alternative Medicine. 18, 235 (2018).
  9. Kruger, N. J., Walker, J. M. The Bradford Method For Protein Quantitation. The Protein Protocols Handbook. , 17-24 (2009).
  10. Tetz, L. M., et al. Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species. Journal of Pharmacological and Toxicological Methods. 67 (2), 56-60 (2013).
  11. Rong, L., et al. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues. Regenerative Biomaterials. 3 (4), 217-222 (2016).
  12. Liu, L. Z., et al. Quantitative detection of hydroxyl radical generated in quartz powder/phosphate buffer solution system by fluorescence spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi. 34 (7), 1886-1889 (2014).

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Bioqu micaN mero 160estr s oxidativo27 Dichlorodihydrofluorescein diacetateespecies reactivas de ox genoc lulas adherentesmicroscopio de fluorescencialector de placas de fluorescencia

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados