A subscription to JoVE is required to view this content. Sign in or start your free trial.
Intraparenchymal hemorrhage and neuroinflammation accompanied by cerebral contusion can trigger severe secondary brain injury. This protocol details a mouse controlled cortical impact (CCI) model allowing researchers to study hemorrhage contusion and post-traumatic immune responses and explore potential therapeutics.
Cerebral contusion is a severe medical problem affecting millions of people worldwide each year. There is an urgent need to understand the pathophysiological mechanism and to develop effective therapeutic strategy for this devastating neurological disorder. Intraparenchymal hemorrhage and post-traumatic inflammatory response induced by initial physical impact can aggravate microglia/macrophage activation and neuroinflammation which subsequently worsen brain pathology. We provide here a controlled cortical impact (CCI) protocol that can reproduce experimental cortical contusion in mice by using a pneumatic impactor system to deliver mechanical force with controllable magnitude and velocity onto the dural surface. This preclinical model allows researchers to induce moderately severe focal cerebral contusion in mice and to investigate a wide range of post-traumatic pathological progressions including hemorrhage contusion, microglia/macrophage activation, iron toxicity, axonal injury, as well as short-term and long-term neurobehavioral deficits. The present protocol can be useful for exploring the long-term effects of and potential interventions for cerebral contusion.
Cerebral contusion is a form of traumatic brain injury that ranks high among the deadliest health issues in modern society1. It is primarily caused by accidental events such as traffic accident that results in external forces applying mechanical energy to the head. Traumatic brain injury affects an approximate of 3.5 million people and accounts for 30% of all acute injury-related deaths in the US each year2. Patients who survive cerebral contusion oftentimes suffer from long-term consequences including focal motor weakness, sensory dysfunction, and mental illness1.
The ....
All procedures described in this protocol were conducted under the approval of the Institutional Animal Care and Use Committee at Cheng Hsin General Hospital and National Taiwan University College of Medicine. Eight- to ten-week-old male C57BL/6 wild type mice were used in this protocol.
1. Anesthesia induction
Illustration of stereotactic placement and craniotomy procedure.
The CCI model is known for its stability and reproducibility in producing injury ranging from mild to severe18. Proper stereotactic technique and craniotomy procedure are major determinants in producing stable and reproducible CCI-induced brain injury (Figure 1A,B). An ideal craniotomy procedure would cause minimal histological injury in the s.......
The CCI protocol produces highly reproducible mechanical injury to the brain for cerebral contusion research. The following steps are crucial for generating consistent brain injury in animals using this CCI protocol.
First, the mouse head should be stably mounted on the stereotaxic frame and the anatomical landmarks Bregma and Lambda always in the same horizontal plane. Unsteady or unlevel head placement oftentimes result in varied injury levels between animals. To ensure the animal head is sa.......
We thank Danye Jiang for editing the manuscript and insightful input. We thank Jhih Syuan Lin for assisting in manuscript preparation. This work was supported by the Ministry of Science and Technology of Taiwan (MOST 107-2320-B-002-063-MY2) to C.F.C.
....Name | Company | Catalog Number | Comments |
4mm Short Trephine Drill | Salvin Dental Specialties, Inc. | TREPH-SHORT-4 | |
anti-Iba1 antibody | Wako chemicals | #019-19741 | |
anti-Ly76 antibody | abcam | ab91113 | |
carboxylate cement | 3M | 70201136010 | |
cortical contusion injury impactor | Custom Design & Fabrication, Inc. | S/N 49-2004-C, eCCI Model 6.3 | CCI device (S/N 49-2004-C, eCCI Model 6.3) |
cresyl violet acetate | Sigma-Aldrich | C5042 | |
DAB staining kit | Vector | SK-4105 | |
goat anti-rabbit IgG secondary antibody, Alexa Fluor 488 | Invitrogen | A11034 | |
goat anti-rat IgG secondary antibody, Alexa Fluor 594 | Invitrogen | A11007 | |
Mayer's Hematoxylin | ScyTek | HMM500 | |
tweezers | fine science tools | 11252-20 NO. 5 | |
isoflurane | Panion & BF Biotech Inc. | ||
lithium carbonate | Sigma-Aldrich | 62470 | |
steriotexic frame | stoelting | ||
scissors | fine science tools | 14068-12 | |
solvent blue 38 | Sigma-Aldrich | S3382 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved