The design of a synthetic operon encoding both the secretory apparatus and the structural monomers of curli fibers is described. Overproduction of these amyloids and adherent polymers allows a measurable gain of adherence of the E. coli chassis1. Easy ways to visualize and quantify adherence are explained.
In this publication, we describe a rapid and convenient procedure for isolating and culturing primary pancreatic acinar cells from the murine pancreas. This method constitutes a valuable approach to study the physiology of fresh primary normal/untransformed exocrine pancreatic cells.
Human endogenous retroviruses (HERV), which occupy 8% of the human genome, retain scarce coding capacities but a hundred thousand long terminal repeats (LTRs). A custom Affymetrix microarray was designed to identify individual HERV locus expression and was used on prostate cancer tissues as a proof of concept for future clinical studies.
Understanding the role of cancer stem-like cells in tumor recurrence and resistance to therapies has become a topic of great interest in the last decade. This article describes the isolation and characterization of the sub-population of cancer stem-like cells from head and neck squamous carcinoma cell lines (HNSCC).
This study reports two different methods for the analysis of cell invasion and migration: the Boyden chamber assay and the in vitro video microscope-based wound-healing assay. The protocols for these two experiments are described, and their benefits and disadvantages are compared.
We present a protocol to compare the state of minerals in vesicles released by two human bone cell lines: hFOB 1.19 and Saos-2. Their mineralization profiles were analyzed by Alizarin Red-S (AR-S) staining, ultraviolet (UV) light visualization, transmission electron microscopy (TEM) imaging and energy dispersive X-ray microanalysis (EDX).
Here, we present atomic force microscopy (AFM), operated as a nano- and micro-indentation tool on cells and tissues. The instrument allows the simultaneous acquisition of 3D surface topography of the sample and its mechanical properties, including cell wall Young's modulus as well as turgor pressure.
The characterization of circulating tumor cells (CTCs) is a popular topic in translational research. This protocol describes a semi-automatic immunofluorescence (IF) assay for PD-L1 characterization and enumeration of CTCs in non-small cell lung cancer (NSCLC) patient samples.
Here, we provide detailed, robust, and complementary protocols to perform staining and subcellular resolution imaging of fixed three-dimensional cell culture models ranging from 100 µm to several millimeters, thus enabling the visualization of their morphology, cell-type composition, and interactions.
Proximity ligation assay is a very useful technique to localize and quantify arginine methylation of a given protein when the modified arginine residue is unknown and/or if no specific antibody is available.
Here, we describe an easy-to-implement, standardized, microphysiological system that reflects the complexity of the human bone marrow's in vivo structure, providing a pertinent model to finely study a broad range of normal and pathological events.