Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
This article describes a simple and rapid protocol to evaluate the oligomeric state of the dynamin-like GTPase MxA protein from lysates of human cells using a combination of non-denaturing PAGE with western blot analysis.
The formation of oligomeric complexes is a crucial prerequisite for the proper structure and function of many proteins. The interferon-induced antiviral effector protein MxA exerts a broad antiviral activity against many viruses. MxA is a dynamin-like GTPase and has the capacity to form oligomeric structures of higher order. However, whether oligomerization of MxA is required for its antiviral activity is an issue of debate. We describe here a simple protocol to assess the oligomeric state of endogenously or ectopically expressed MxA in the cytoplasmic fraction of human cell lines by non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with Western blot analysis. A critical step of the protocol is the choice of detergents to prevent aggregation and/or precipitation of proteins particularly associated with cellular membranes such as MxA, without interfering with its enzymatic activity. Another crucial aspect of the protocol is the irreversible protection of the free thiol groups of cysteine residues by iodoacetamide to prevent artificial interactions of the protein. This protocol is suitable for a simple assessment of the oligomeric state of MxA and furthermore allows a direct correlation of the antiviral activity of MxA interface mutants with their respective oligomeric states.
La structure quaternaire d'une protéine joue un rôle important dans de nombreux processus cellulaires. Les voies de signalisation, l' expression des gènes, et l' enzyme activation / désactivation tous comptent sur le bon assemblage des complexes protéiques 1-4. Ce procédé également connu sous le nom d'homo- ou d'hétéro-oligomérisation est due à la liaison covalente irréversible ou des interactions protéine-protéine électrostatique et hydrophobe réversibles. Oligomérisation non seulement de diversifier les différents processus cellulaires sans augmenter la taille du génome, mais fournit également une stratégie de protéines pour construire des complexes stables qui sont plus résistantes envers une dénaturation et une dégradation 5. Défauts dans oligomérisation ont un impact sur la fonction des protéines et peuvent conduire au développement de maladies. Par exemple, l'enzyme phénylalanine hydroxylase forme un complexe tétramérique. Des mutations dans le complexe protéique peuvent affaiblir la formation du tétramère et conduire à la phénylcétonurie , la maladie 6.
La protéine MxA humain est un interféron (IFN) induite par la protéine antivirale effecteur exerçant une large activité antivirale contre divers ARN, ainsi que des virus à ADN à 7. Il appartient à la superfamille des grandes GTPases dynamine-like et a la capacité de former de grandes structures oligomériques in vitro 8. L' oligomérisation a été proposé de protéger contre une dégradation rapide MXA 9,10. En dépit des efforts intenses par de nombreux groupes de recherche, le mécanisme moléculaire d'action reste largement insaisissable et le rôle de l'état d'oligomérisation de MXA pour sa fonction antivirale est en débat 9,11,12. À cet égard, Gao et ses collègues ont proposé un modèle où MxA exerce son activité antivirale en interagissant avec des nucléoprotéines virales sous forme de grandes structures oligomériques 11 annulaires. Cependant, plus récemment, nous avons démontré que les dimères MxA présentent une activité antivirale et d' interagir avec la nucléoprotéine du virus grippal A 12. Belon sur la structure cristalline de la MXA, Gao et ses collaborateurs ont identifié plusieurs résidus d'acides aminés dans les régions d'interface qui sont essentielles pour son oligomérisation in vitro et sa fonction antiviral 11,13. Par conséquent, afin d'élucider ce qui oligomérique état de MXA exerce une activité antivirale, nous avons cherché à établir un protocole simple de déterminer rapidement l'état oligmeric de mutants d'interface MxA exprimées dans les cellules humaines, ainsi que endogènes MxA exprimé après IFNa stimulation.
Bien qu'il existe de nombreuses techniques qui sont couramment utilisés pour étudier l'interaction entre les protéines telles que la protéine split-Green Fluorescent (split-GFP) complémentation test 14, la résonance plasmonique de surface 15 et Förster transfert d'énergie par résonance (FRET) 16, ils ne fournissent pas l'information de la stoechiométrie exacte d'un complexe protéique oligomère. Pour enquêter sur cet aspect particulier, des techniques telles quela diffusion multi-angle de la lumière (MALS) 17 et ultracentrifugation analytique 18 sont très utiles. Habituellement, les protéines analysées en utilisant ces procédés sont des protéines purifiées. procédés d'oligomérisation peuvent également dépendre d'autres facteurs cellulaires. Si ces facteurs sont inconnus, l'analyse est plus difficile. En outre, certaines protéines sont difficiles à exprimer dans E. coli et à purifier. Par conséquent, ces méthodes ne sont pas le choix optimal pour analyser la protéine oligomérisation dans l'environnement cellulaire. En outre, ces techniques nécessitent des instruments coûteux qui ne sont pas facilement disponibles.
Non-électrophorèse sur gel dénaturant de polyacrylamide (PAGE), la chromatographie d'exclusion stérique ou la reticulation chimique suivie par le dodécylsulfate de sodium classique (SDS) -PAGE sont des outils utiles pour la caractérisation de la formation d'oligomères à partir de lysats de cellules 2,19,20. Ces méthodes ne nécessitent pas d'équipement spécialisé et peuvent être facilement performed dans un laboratoire standard. Nous avons d'abord évalué différents protocoles de reticulation chimiques qui invariante conduit à l'agrégation et la précipitation des MXA non spécifique. Par conséquent, nous avons ensuite testé les protocoles PAGE non dénaturants. Comme non-dénaturant PAGE exclut l'utilisation de SDS, la migration des protéines dépend de leur charge native. PAGE Blue-native utilise Coomassie G250 bleu brillant pour charger des protéines avec une charge globale négative, similaire à SDS, mais ne dénature pas la protéine 21. Malheureusement, le bleu brillant de Coomassie précipite en présence de sels élevées et des cations divalents (par exemple Mg 2+) qui sont souvent inclus dans les tampons de lyse. Selon les tampons utilisés, il peut être difficile d'analyser l'échantillon sans autre optimisation des mesures qui pourraient avoir un effet sur le complexe protéique oligomérique.
Nous présentons ici un protocole simple basé sur une méthode publiée précédemment 22 pour déterminer oligomérisationprotéine humaine MxA provenant de lysats cellulaires en utilisant non-dénaturant PAGE.
Access restricted. Please log in or start a trial to view this content.
NOTE: Ce protocole est basé sur la non-dénaturant PAGE protocole précédemment publié 12. Dans cette étude, l'état oligomérique de la protéine MxA a été évaluée en utilisant soit des cellules Vero ou des cellules surexprimant MXA A549 IFN-a stimulée endogène exprimant MXA. Le protocole décrit ci-dessous peut être utilisé pour analyser l'état d'une quelconque protéine oligomérique en plus MXA. Cependant, une optimisation supplémentaire peut être nécessaire.
1. Préparation de lysat cellulaire pour les non-dénaturant PAGE
NOTE: Pour analyser l'état oligomérique de la protéine MxA humaine dans des cellules Vero ou A549, 1,0 x 10 6 cellules ont été récoltées. En fonction du type cellulaire ou l'abondance de la protéine à analyser, le nombre de cellules doit être ajustée. Il est également important de protéger le tampon de lyse de l'exposition à la lumière, dès que l'iodoacétamide sensible à la lumière est ajouté.
2. Electrophorèse
REMARQUE: L' électrophorèse a été réalisée comme décrit précédemment avec des modifications 22. Dans le protocole décrit ci-dessous, des gels de gradient préfabriqués ont été utilisés (4-15% gradient). En variante, les gels peuvent être préparés au laboratoire. Il est très important d'exclure tout agent dénaturant tel que le SDS pour empêcher la dissociation des complexes de protéines oligomériques. Le temps de l'électrophorèse a été optimisé pour les différents états oligomériques de la protéine MxA humaine. Cependant, elle peut varier pour d'autres protéines, en fonction de la taille du complexe oligomérique, ainsi que l'intervalle de séparation qui est censée être réalisée pour analyser le complexe. Par conséquent, la durée optimale de l'électrophorèse doit être déterminée de manière empirique. Pour une résolution optimale des oligomères à analyser le courant ne doit pas dépasser 25 mA.
3. Western Blot
NOTE: Décrite ci-dessous est le protocole d'un système de western blot humide. Toute membrane buvard peut être utilisé. Activer le fluorure de polyvinylidène (PVDF) dans les membranes 100% de methanol avant d'équilibration dans buf buvardfer. La technique de western blot semi-sec peut être utilisé alternativement, mais doit être optimisé pour les grands complexes oligomériques.
Access restricted. Please log in or start a trial to view this content.
Utilisation non-dénaturant PAGE, nous avons analysé l'état oligomérique de type sauvage humaine MXA, les dimères mutants d'interface MXA (R640A) et MXA (L617D), ainsi que le mutant d'interface monomère MXA (M527D) à partir de lysats cellulaires 12. Les cellules ont été lysées dans un tampon contenant 1% d' octylphénoxypolyéthoxyéthanol (NP-40) et iodoacétamide pour assurer la solubilisation et la protection des groupes thiol libres protéine (voir figure 1). Comm...
Access restricted. Please log in or start a trial to view this content.
Ici, nous décrivons une méthode simple qui permet la détermination rapide de l'état oligomérique des protéines exprimées dans des cellules de mammifères par PAGE non dénaturante suivie d'une analyse par transfert de Western. L'avantage majeur de cette approche est que l'état oligomérique d'une protéine donnée peut être déterminée à partir de lysats de cellules entières sans purification protéique préalable. Cela peut être important pour des protéines qui oligomériser ou exercen...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was funded by a Grant from the Swiss National Science foundation (Grant nr. 31003A_143834) to JP.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Slide-A-Lyzer MINI Dialysis Units, 10K MWCO, 0.5 ml | Thermo Fisher Scientific | 69570 | Pre-equilibrate in dialysis buffer (if Glycerol removal is desired) Can be self-made according to Fiala et al. 2011 |
4–15% Mini-PROTEAN TGX Precast Protein Gels, 10-well, | Bio-Rad | 456-1083 | Pre-run in running buffer to adjust buffer system |
cOmplete, Mini, EDTA-free | Roche | 11836170001 | use 1 tablet per 50 ml |
PBS, pH 7.4 bottle a 500 ml Gibco | Thermo Fisher Scientific | 14190-094 | |
Ponceau S solution | Sigma-Aldrich | P7170 | TOXIC wear gloves and protect eyes |
NativeMark Unstained Protein Standard 50 µl | Invitrogen | P/N 57030 | load 5 µl/well |
A549 cells | ATCC | ATCC CCL185 | Grow in growth medium (see Table 1) |
Vero cells | ATCC | ATCC CCL81 | Grow in growth medium (see Table 1) |
anti-Mx1 antibody | Novus Biologicals | H00004599_D01P | Use at a 1:1,000 dilution |
ECL Anti-rabbit IgG, Horseradish Peroxidase linked whole antibody (from donkey) | GE-Healthcare | NA934V | Use at a 1:10,000 dilution |
0.5% Trypsin-EDTA (1x) Life Technologies | Thermo Fisher | 15400-054 | |
Iodoacetamide 5 g | Sigma-Aldrich | I-6125 | stock 100 mM |
Bromphenolblue | Sigma-Aldrich | B0126-25G | |
DMEM +4.5g/l Gluc,+L-Glut,+Pyruvate life technologies | Thermo Fisher Scientific | 41966-029 | |
Pen Strep 100 x 100ml life technologies | Thermo Fisher Scientific | 15140 - 130 | |
Glutamax 100x Stock, 100 ml life technologies | Thermo Fisher Scientific | 350500-038 | |
Fetal Bovine Serum, Dialyzed , US Origin 500 ml Gibco Lot:42G9552K | Thermo Fisher Scientific | 10270-106 | |
Cellulose filter paper | Bio-Rad | 1703965 | |
PVDF blotting membrane | GE-Healthcare | 10600022 | |
Tris(hydroxymethyl)aminomethane | Biosolve | 0020092391BS | |
sodium fluoride (NaF) | Sigma Aldrich | S-7920 | |
NP-40 | Calbiochem | 492015 | |
cOmplete, Mini, EDTA-free | Roche | 11836170001 | |
Tween 20 | Calbiochem | 6555204 | |
CHAPS 10% solution | Amresco | N907 | |
DL-Dithiothreitol (DTT) | Sigma Aldrich | 43819 | |
Glycine | Biosolve | 0007132391BS | |
sodium orthovanadate (Na3VO4) | Sigma Aldrich | 450243 | |
Glycerol | Sigma Aldrich | G7757 | |
β-Glycerophospate | Sigma Aldrich | G9422 | |
Milk powder | Migros/Switzerland | ||
Methanol | Millipore | 1.06009 | |
sodium cloride (NaCl) | Sigma Aldrich | 71380 | |
magnesium chloride (MgCl2) | Amresco | 288 | |
Sodium dodecyl sulphate (SDS) | Sigma Aldrich | L4509 | |
sodium hydroxide (NaOH) | Sigma Aldrich | S-8045 |
Access restricted. Please log in or start a trial to view this content.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon