Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Nous décrivons un protocole d’évaluation des courbes dose-réponse pour la stimulation extracrânienne en termes de mesures du champ électrique cérébral et d’un biomarqueur-flux sanguin cérébral pertinent. Étant donné que ce protocole implique la mise en place invasive d’électrodes dans le cerveau, une anesthésie générale est nécessaire, la respiration spontanée étant préférée aux respirations contrôlées.
La détection des réponses du flux sanguin cérébral (CBF) à diverses formes d’activation neuronale est essentielle pour comprendre le fonctionnement dynamique du cerveau et les variations de l’approvisionnement en substrat du cerveau. Cet article décrit un protocole de mesure des réponses CBF à la stimulation transcrânienne par courant alternatif (tACS). Les courbes dose-réponse sont estimées à la fois à partir de la variation du CBF survenant avec le tACS (mA) et du champ électrique intracrânien (mV/mm). Nous estimons le champ électrique intracrânien en fonction des différentes amplitudes mesurées par des microélectrodes en verre de chaque côté du cerveau. Dans cet article, nous décrivons le dispositif expérimental, qui implique l’utilisation de sondes Doppler laser bilatérales (LD) ou d’imagerie laser par chatoiement (LSI) pour mesurer le CBF ; Par conséquent, cette configuration nécessite une anesthésie pour le placement et la stabilité de l’électrode. Nous présentons une corrélation entre la réponse CBF et le courant en fonction de l’âge, montrant une réponse significativement plus importante à des courants plus élevés (1,5 mA et 2,0 mA) chez les jeunes animaux témoins (12-14 semaines) par rapport aux animaux plus âgés (28-32 semaines) (p < 0,005 différence). Nous démontrons également une réponse significative du CBF à des intensités de champ électrique <5 mV/mm, ce qui est une considération importante pour d’éventuelles études humaines. Ces réponses CBF sont également fortement influencées par l’utilisation de l’anesthésie par rapport aux animaux éveillés, le contrôle de la respiration (c’est-à-dire la respiration intubée par rapport à la respiration spontanée), les facteurs systémiques (c’est-à-dire le CO2) et la conduction locale dans les vaisseaux sanguins, qui est médiée par les péricytes et les cellules endothéliales. De même, des techniques d’imagerie et d’enregistrement plus détaillées peuvent limiter la taille du champ de l’ensemble du cerveau à une petite région. Nous décrivons l’utilisation d’électrodes extracrâniennes pour l’application de la stimulation tACS, y compris des conceptions d’électrodes artisanales et commerciales pour les rongeurs, la mesure simultanée du CBF et du champ électrique intracrânien à l’aide d’électrodes d’enregistrement CC bilatérales en verre, et les approches d’imagerie. Nous appliquons actuellement ces techniques pour mettre en œuvre un format en boucle fermée afin d’augmenter le CBF dans des modèles animaux de la maladie d’Alzheimer et des accidents vasculaires cérébraux.
La stimulation électrique transcrânienne (tES ; avec stimulation par onde sinusoïdale, tACS) est une approche courante, externe et non invasive de la neuromodulation cérébrale 1,2. Précédemment, nous avons émis l’hypothèse qu’à certaines doses, les tES (et en particulier les tACS) peuvent augmenter le flux sanguin cérébral (CBF) dans les régions cérébrales sous-jacentes3. De plus, il peut exister une relation dose-réponse entre le courant externe appliqué ou le champ électrique intracrânien et les réponses CBF qui en résultent. Cependant, la plupart des protocoles de stimulation clinique se sont concentrés sur un niveau maximal de stimulation cutanée confortable (c’est-à-dire ~ 2 mA) pendant des périodes de temps programmées (c’est-à-dire 30-45 min) en tant que protocole de traitement 4,5. Chez les rongeurs, il est possible d’utiliser des électrodes cérébrales extracrâniennes invasives appliquées directement sur le crâne pour étudier les champs électriques dans le cerveau induits par tES6. Par conséquent, l’objectif de cette approche est de déterminer les effets de l’intensité de la tACS à des fréquences pertinentes sur les changements du CBF en termes de relation dose-réponse. Cette courbe dose-réponse est basée sur un biomarqueur physiologique à court terme - mesures directes du CBF - en relation avec le champ électrique imposé au cerveau3. Nous avons précédemment montré qu’à des amplitudes plus importantes, généralement au-delà de la gamme des champs électriques dans le cerveau induits cliniquement par le tACS, il existe une corrélation quasi linéaire entre le champ électrique induit et le CBF dans le cortex3. Cependant, la stimulation à plus petit champ (c.-à-d. une intensité de 1 à 5 mV/mm) peut être plus pertinente et réalisable pour une utilisation chez l’homme ; par conséquent, nous avons modifié nos techniques pour détecter les plus petits changements de CBF.
Cet article décrit un protocole permettant d’analyser les effets des courants sinusoïdaux alternatifs tES (tACS) à faible intensité de champ sur le CBF (c’est-à-dire un courant de 0,5 à 2,0 mA, un champ électrique de 1 à 5 mV/mm), qui peuvent être tolérés par des rongeurs éveillés5. Ce protocole implique l’utilisation d’une nouvelle imagerie laser par chatoiement pendant le tACS, ainsi que de deux électrodes intracrâniennes en verre, pour déterminer à la fois la propagation du tACS actif dans le cerveau (telle que surveillée par le CBF) et l’intensité du champ électrique intracrânien, qui est montrée à la fois sous forme de diagramme et de photographie expérimentale réelle (Figure 1). Il existe de nombreux effets physiologiques possibles de la tES dans le cerveau, notamment la modulation neuronale directe, la plasticité neuronale et l’activation des astrocytes 7,8. Bien que le CBF ait été mesuré avec la tDCS 9,10, ces mesures étaient lentes, indirectes et insuffisantes pour évaluer la fonction dose-réponse dans le cerveau. Par conséquent, en utilisant des biomarqueurs à court terme appropriés (c.-à-d. CBF, champs électriques) et des séquences marche/arrêt rapides de tACS, nous pouvons maintenant estimer la fonction dose-réponse avec plus de précision. De plus, nous pouvons appliquer différentes techniques pour mesurer le CBF, y compris les sondes Doppler laser focales (LD) et l’imagerie laser par chatoiement (LSI) avec des régions d’intérêt définies.
Figure 1 : Schéma de stimulation transcrânienne et exemple photographique. (A) Schéma de l’installation de stimulation transcrânienne. Le schéma montre un crâne de souris avec des sutures coronales et sagittales. Les électrodes transcrâniennes sont placées latéralement et symétriquement sur le crâne et sont montées avec de la colle chirurgicale et de la pâte conductrice entre les électrodes et le crâne. Ces électrodes sont connectées à un dispositif de stimulation à courant constant compatible avec l’homme, qui peut spécifier la fréquence, l’amplitude et la durée de la stimulation. Pour l’évaluation des champs électriques intracrâniens, des électrodes de verre bilatérales (~ 2 MΩ) sont placées dans le cortex cérébral (c’est-à-dire à moins de 1 mm de la face interne du crâne à travers de petits trous de bavures), et celles-ci sont scellées avec de l’huile minérale et ont des motifs AgCl dans le muscle du cou (représentés par des fils plus gros au centre enfouis dans le tissu sous-cutané du cou). Ces électrodes de verre sont connectées à un amplificateur CC et leurs sorties sont enregistrées par un numériseur avec au moins quatre canaux. Des sondes Doppler laser bilatérales sont également placées sur le crâne pour les enregistrements. L’ensemble du crâne est également photographié à l’aide d’un dispositif d’imagerie par chatoiement laser ou d’une caméra refroidie à haute résolution (au moins 1 024 x 1 024 pixels, profondeur de pixel de 12 à 14 bits) pour la détection du signal optique intrinsèque. La fréquence isobestique de l’hémoglobine est généralement choisie (c’est-à-dire 562 nm) pour l’éclairage de l’imagerie du flux sanguin. (B) Une image en gros plan d’une expérience réelle, montrant les sondes Doppler laser bilatérales (à gauche), les microélectrodes d’enregistrement intracrâniennes (bilatérales) en verre placées à travers les trous de bavures, et avec les électrodes de stimulation tACS latéralement. Abréviation : tACS = stimulation transcrânienne à courant alternatif. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Afin d’évaluer les mécanismes, nous pouvons également interroger les interactions avec d’autres processus physiologiques qui modifient également le CBF, tels que la dépolarisation par propagation induite par K+ 11. De plus, plutôt que de programmer des séances à des heures régulières, il est également possible de développer un système en boucle fermée basé sur des biomarqueurs supplémentaires pour une variété de maladies, comme cela a été proposé pour le traitement de l’épilepsie12 (c’est-à-dire les dispositifs cliniques Neuropace). Par exemple, la stimulation cérébrale en boucle fermée pour la maladie de Parkinson est généralement basée sur les potentiels de champ local (LFP) intrinsèques et anormaux intrinsèques à cette maladie en l’absence d’une quantité suffisante de dopamine (généralement des LFP à bande β)13.
Toutes les procédures relatives aux animaux ont été approuvées par le Comité institutionnel de protection et d’utilisation des animaux de l’Université Duke ou par l’autorité locale équivalente réglementant la recherche sur les animaux. Consultez le tableau des matériaux pour plus de détails sur tous les matériaux, instruments et équipements utilisés dans ce protocole.
1. Préparation de l’instrument
Figure 2 : Photographie de l’instrumentation requise, y compris les instruments de dissection et les ciseaux, pour préparer la stimulation extracrânienne. 1. Ciseaux de micro-dissection, 11,5 cm ; 2. Pince de 11,5 cm, légèrement courbée, dentelée ; 3. Pince Dumont #7, courbée ; 4. Pince Dumont #5 ; 5. Micro curette, 13 cm ; 6. Cotons-tiges ; 7. Ruban chirurgical ; 8. Tampons d’alcool. Veuillez cliquer ici pour voir une version agrandie de cette figure.
2. Préparation de l’animal à la chirurgie
NOTE : Pour ces expériences, nous avons utilisé 14 souris témoins C57BL/6 âgées de 12 à 33 semaines, dont cinq mâles et neuf femelles.
Figure 3 : Une image de l’animal dans le cadre stéréotaxique, avec le crâne exposé et seules les électrodes du stimulateur tACS en place (avant la mise en place du trou de bavure). Notez l’appareil de mesure de la pression artérielle autour de la queue et l’oxymètre de pouls sur la patte, avec la lecture à gauche. Il y a des tubes de piégeage pour l’isoflurane autour du cône nasal. Abréviation : tACS = stimulation transcrânienne à courant alternatif. Veuillez cliquer ici pour voir une version agrandie de cette figure.
3. Intervention chirurgicale : Application des électrodes de stimulation et réalisation des trous de bavure
4. Procédure physiologique
5. Placement d’électrodes laser bilatérales Doppler et de verre
6. Procédure de stimulation et mesure de l’intensité de la stimulation transcrânienne à courant alternatif (tACS) ou de la stimulation transcrânienne à courant continu (tDCS)
Figure 4 : Données montrant quatre canaux de données brutes en réponse à des tACS de faible intensité. Les données sont disposées avec les deux rangées supérieures en tant qu’enregistrements électriques intracrâniens et directs en courant continu (étiquetées comme entrée 1 [IN0] et entrée 2 [IN1]) et les deux rangées inférieures en tant qu’enregistrements Doppler laser bilatéraux du flux sanguin cérébral. Notez que les réponses sont asymétriques entre les traces de flux sanguin électrique et cérébral droite (supérieure) et gauche (inférieure). (A) Une petite réponse (augmentation de 16 % du flux sanguin) en réponse à un stimulus de 1,2 mV/mm 20 s (0,75 mA). (B) Une réponse plus importante (augmentation de 21 % du flux sanguin) en réponse à un stimulus de 1,4 mV/mm (1,0 mA). Abréviation : tACS = stimulation transcrânienne à courant alternatif. Veuillez cliquer ici pour voir une version agrandie de cette figure.
7. Calcul du champ électrique
Des résultats représentatifs sont présentés à la figure 4, à la figure 5 et à la figure 6. La figure 4 montre un exemple des quatre canaux avec les deux électrodes d’enregistrement intracrâniennes sur les canaux supérieurs et les réponses CBF sur les canaux inférieurs. Le tACS est symétrique sur l’ensemble du crâne, mais en général, la réponse du champ intracrânien est légèremen...
Ce protocole se concentre sur la mesure in vivo et anesthésiée de la réponse CBF en tant que biomarqueur pour estimer la réponse cérébrale à tES14. Les biomarqueurs à plus long terme de la réponse tES comprennent les effets histologiques du traitement, tels que la prévention ou les changements dans la formation de plaques amyloïdes (c.-à-d. avec une stimulation gamma à 40 Hz dans plusieurs modèles de MA)16,17,18,19
Les auteurs n’ont aucun conflit d’intérêts à déclarer.
Cette étude a été financée par les subventions suivantes (à D.A.T.) : NIA RO1 AG074999, NIA R21AG051103, VA I21RX002223 et VA I21 BX003023.
Name | Company | Catalog Number | Comments |
Alcohol pads | HenryShein | 112-6131 | |
Baby mineral oil | Johnson & Johnson | ||
BD 1 mL syringe | Becton Dikinson | REF 305699 | |
C3 Flat Surface Electrodes | Neuronexus | ||
C57BI mice | from NIH colonies | ||
Copper skull electrods | In house preparation | ||
Digidata 1440, Clampex | Axon Instruments | ||
Dumont #5 forceps | FST | #5 | |
Dumont #7 forceps curved | Dumont | RS-5047 | |
Eye ointment | Major | LubiFresh P.M. NDC-0904-6488-38 | |
Flaming/Brown micropipette puller | Sutter instrument Co. | Model P-87 | |
Forceps 11.5 cm slight curve serrated | Roboz | RS-8254 | |
Intramedic needle 23 G | Becton Dikinson | REF 427565 | |
KCl 1 M | In house preparation | ||
Laser Doppler Probes | Moor Instruments | 0.46 mm laser doppler probes | |
Laser Speckle Imaging Device | RWD | RFLSI-ZW | |
Micro curette 13 cm | FST | 10080-05 | |
Micro Dissecting Scissors, 11.5 cm | Roboz | RS-5914 | |
Mouse anesthesia fixation | Stoelting | ||
Neuroconn-DS | Neurocare | DC-Stimulator Plus | |
PhysioSuite Monitoring | Kent Scientific | ||
Q-tips | Fisherbrand | 22363167 | |
Saline 0.9% NaCl solution | Baxter | 281322 | |
Sensicam QE | PCO Instruments | ||
Software | Axon Instruments Clampex | ||
Surgical glue | Covetrus | 31477 | |
Surgical tape | 3M Transpore | T9784 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon