JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • תוצאות
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

המאפיינים המכאניים של glycocalyx אנדותל נמדדו על ידי כניסה באמצעות כדורים בגודל מיקרון על cantilevers AFM. תאי אנדותל בתרבית בתא מותאם אישית תחת תנאי זרימה פיסיולוגיים לגרום ביטוי glycocalyx. נתונים נותחו באמצעות מודל סרט דק כדי לקבוע את העובי ומודולוס glycocalyx.

Abstract

ההבנה של האינטראקציה של לויקוציטים ודופן כלי הדם במהלך לכידת יקוציט מוגבל על ידי הבנה חלקית של התכונות המכאניות של שכבת פני השטח האנדותל. זה ידוע כי מולקולות דבקות על תאי דם לבנים מופצות לא אחידה ביחס למשטח 3 טופוגרפיה, הטופוגרפיה שמגבילה היווצרות קשרים עם דבק משטחים אחרים 9, וכי כוחות המגע פיסיולוגיים (≈ 5.0-10.0 PN לmicrovillus) יכולים לדחוס את microvilli כל קטן כשליש מאורך המנוחה שלהם, להגדיל את הנגישות של מולקולות על פני השטח היריב 3, 7. אנו רואים האנדותל כמבנה דו שכבתי, גוף התא הקשיח יחסית, בתוספת glycocalyx, ציפוי סוכר מגן רך על פני שטח luminal 6. הוכח שglycocalyx יכול לפעול כמחסום להפחתת הידבקות של לויקוציטים לאנדותל 4 משטח.בדו"ח זה אנו מתחילים להתייחס deformability של משטחי אנדותל להבין כיצד הקשיחות המכאנית האנדותל עשויה להשפיע על היווצרות קשרים. תאי האנדותל הגדלים בתרבית סטטית אינם מבטאים glycocalyx חזק, אבל תאים שגודלו בתנאי זרימה פיסיולוגיות מתחילים המשוער glycocalyx נצפה בvivo 2. מודולוס של גוף התא האנדותל כבר נמדד באמצעות מיקרוסקופ כוח אטומי (AFM) כדי להיות כ 5-20 kPa 5. עובי המבנה של glycocalyx נחקרו באמצעות מיקרוסקופ אלקטרונים 8, ומודול של glycocalyx כבר מקורב תוך שימוש בשיטות עקיפות, אבל למיטב ידיעתנו, לא חל כל דו"חות רשמיים של מדידה ישירה של מודולוס glycocalyx בתאים חיים . במחקר זה, אנו מציגים ניסויים שנעשו עם הזחת רומן AFM בדיקה על תאים שכבר בתרבית בתנאים למקסם ביטוי glycocalyx למאמדידה ישירה של ke מודולוס והעובי של glycocalyx אנדותל.

Protocol

1. שיטות

לשכת תזרים סלולרי 1.1

תא זרימה, מוצג באיור 1, נבנה כך שניתן לגדל תאים תחת גזירה של 1.0 Pa (10 / סנטימטר dyn 2) ולאחר מכן מועברים ישירות למקלט MFP3D AFM (סנטה ברברה, קליפורניה).

  1. תא הזרימה היה מוכן לניסוי על ידי ניקוי תחילה את שקופיות הזכוכית בפתרון Piranha (03:01 H 2 SO 4: H 2 O 2) במשך 15 דקות ולאחר מכן לשטוף אותם במים מזוקקים. אז הם היו אופים ליבשים ומצופים בtriethoxy silane aminopropyl (APTES) בתא ואקום בתצהיר.
  2. אטם סיליקון נחתך באמצעות כלי חיתוך SD צללית. זה אפשר לנו היטב לשלוט בממדים הקאמריים הזרימה לשליטה על קצב הזרימה ומאמץ גזירה בגדילת תאים. בדרך כלל, ערוץ נחתך 6.4 מ"מ רחב של 19 מ"מ ארוך מגיליון של סיליקון מ"מ 0.4. קצב הזרימה ההכרחי לסוגיםטה מאמץ גזירה של 1.0 Pa (10 dyn / סנטימטר 2) מחושב בהנחה שהזרימה למינרית בערוץ מלבני עם המשוואה:

figure-protocol-1296
בי Q הוא קצב הזרימה, τ הוא מאמץ הגזירה, μ הוא הצמיגות הבינונית, מניח כאן להיות 1.0 MPA (0.01 dyn * שניות / סנטימטר 2), h הוא הגובה והרוחב הוא הרוחב של תא הזרימה .

  1. הקטע העליון של תא הזרימה היה מתואם עם האטם בצלחת תרבית תאים ומאובטחים עם טבעת מגנטית. ההרכבה הייתה מלאה באיזופרופיל אלכוהול (IPA) לעיקור.
  2. מערכת הזרימה המלאה הורכבה. יציאות הזרימה בצלחת תרבית התאים הייתם מחוברות לשסתומים משולשים. השסתומים היו קשורים לפתיחת מזרק מ"ל 30s. IPA היה סמוק דרך המערכת, אז שנשטפה עם 30 מ"ל של מדיום של מקוי עם 4% עגל סרום עוברי (FCS). אז המערכת הייתה מלאה ב20 מ"ל של מדיום גידול תאי טכנולוגיות Vec. כיסויים הונחו על צמרות המזרקים. כובע מזרק המאגר לתפוס לו מחט במקום לזוז בינוני בחזרה למאגר ההזנה. 0.2 מסנני מיקרומטר סטריליים צורפו לפתחי כניסת האוויר בשמיכות כדי למנוע זיהום של המערכת. תא הזרימה היה אז מוכן לזריעת תאים.

תא תרבות 1.2

  1. תאים אנושיים טבור וריד האנדותל (HUVEC של) ובינוני צמיחה נרכשו מטכנולוגיות Vec (Rensselaer, ניו יורק) וגדלו למפגש בT25 בקבוק.
  2. מדיום הגידול הוסר מהבקבוקון וmonolayer של תאים משתחררים עם 2 מ"ל של טריפסין 2.5%. ברגע שהתאים היו בתמיסה, trypsinization היה רווה עם תוספת של 10 מ"ל של מדיום תרבות תא לבקבוק.
  3. ההשעית תא דואר הייתה centrifuged למשך 5 דקות וsupernatant הוסר. התאים היו resuspended ב 1 מ"ל של מדיום תרבית תאים (המכיל סרום) להזרקה לתוך תא הזרימה.
  4. השעית התא (0.5 מ"ל, ~ 50,000 תאים) הוכנסה למזרק והזריקה לתוך תא הזרימה דרך שסתום שלוש דרך.
  5. התאים הורשו להתיישב ולדבוק במצע הזכוכית ל2 שעות לפני הזרימה החלה. את התאים גודל תחת זרימה בחממה ב 37 ° C עבור 1 עד 5 ימים עד confluent.

הכנת Cantilever 1.3 וכניסה סלולרית

  1. cantilevers AFM Tipless (NanoWorld, שוויץ) נוקו בחומצה חנקתית למשך 5 דקות ופונקציונליות עם triethoxy silane aminopropyl (APTES) בתא שיקוע.
  2. פתרון של 5 מ"ג / מ"ל ​​לפי משקל NHS-sulfo-LC-ביוטין בתמיסת מלח Buffered של האנק (HBSS) היה מוכן. את cantilevers היה שקוע בפתרון במשך 15 דקות לconjuשער silane עם N-Hydroxysuccinimide כימיה (NHS).
  3. פתרון של מדיום חופשי ביוטין נעשה על ידי דוגר 20 מ"ל של מדיום Vec טכנולוגיות תא התרבות (כולל סרום) עם 200 μl של חרוזי streptavadin עבור 12 שעות. החרוזים הוסרו מהמדיום עם מגנט והבינוני היה מסונן דרך מסנן סטרילי 0.22 מיקרומטר.
  4. תא הזרימה הוסר מצלחת תרבית התאים והתאים נשטפו 37 ° C הבינוני ביוטין חינם.
  5. פתרון מניות של μl 1 מתוך 2.4 מיקרומטר חרוזים מצופים בstreptavidin 1 מ"ל של מדיום חופשי ביוטין היה מוכן, ו100 μl של המניות נוספת לצלחת תרבית התאים.
  6. חרוזי streptavidin נאספו בשלוחה על ידי נחיתת טיפ על משטח הזכוכית לצד, לחזור בו חרוז, מיצוב השיא של השלוחה מעל החרוז, ולאחר מכן לחיצה על השלוחה למטה, אל כמה שניות החרוזות ומנוחה.
  7. הרגישות של השלוחה הייתה מידהד ידי indenting על אזור של זכוכית חשופה ובאמצעות השיפוע העקום להגדיר סטיית הקצה כפונקציה של מתח.
  8. קבוע הקפיץ של השלוחה חושב אזי מכיול תרמי בתוכנת MFP3D.
  9. השלוחה המכוילת שמשה אז לשנן את הדגימות, כפי שמוצגת באיור 2. 2.4 מיקרומטר חרוזים אלו מציעים שטח מגע גדול יותר עם תא השטח, כך שהתכונות המכאניות של שכבת glycocalyx הרכה ניתן לאתר. השלוחה הוצבה מעל תא ליד גרעין התא וגישה רכה של הקצה אל התא היה בשימוש כדי לקבוע את גובה השלוחה כ 3 מיקרומטר מעל פני שטח התא. התוכנה הוקמה במשך 20 חריצים חוזרים ונשנים בשיעור של 1 מיקרומטר / שנייה לכוח מקסימאלי של 7 NN. כ 6 שניות שחלפו בין אנשי קשר רצופים. ניתן להשתמש בתעריפים שונים של כניסה לבדיקת תכונות תלויות הזמן glycocalyx, אם כי באלה ראשוניים ניסויים, רק שיעור כניסה יחידה (מיקרומטר 1 / שני) היה בשימוש.

2. תאורית הזחה

כניסה למחצית שטח אלסטי עם מרחב של R רדיוס ניתן לתאר באמצעות תאורית הרץ שבו הכח של כניסה, F, נתונה על ידי המשוואה:

figure-protocol-6254
איפה δ הוא עומק ההזחה ו* E הוא מודולוס המופחת של החומר נבדק (איור 3). במקרה של indenter אינסוף נוקשה לפגוע חצי מרחב אלסטי אחיד, * דואר ניתן על ידי המשוואה:

3/50163eq3.jpg "/>
כאשר E היא מודולוס האלסטיות וν הוא יחס פואסון של החומר. העבודה האחרונה עם פולימר סרטים נתנה השראה לפיתוח מודל שתי שכבה לקביעת מודולוס והעובי של שכבות דקות 1. אנו מיישמים את המודל הזה לביולוגיה של תא על ידי טיפול glycocalyx כסרט רך דק אחיד על פני השטח של גוף התא. שימוש במודל זה, מודולוס המופחת של המערכת הופך להיות:

figure-protocol-7187
כאשר E GC הוא מודולוס של glycocalyx, תא הדואר הוא מודולוס של גוף התא, P, Q ו n הם קבועים אשר נקבעו באופן אמפירי מהפולימר המתאים, וZ זה נתונה על ידי המשוואה:

-Together.within עמודים = "תמיד"> figure-protocol-7678
כאשר t הוא עובי שכבת glycocalyx. סכמטי של פרמטרים אלה מוצג באיור 3. המודל הוכח להיות דרך מדויקת של קביעת מודולוס והעובי של סרט דק על מצע 1 נוקשה. משוואה זו יכולה לשמש כדי להתאים את העקומות המתקבלות מכניסה לתוך תאים כדי לקבוע מודולוס והעובי של glycocalyx האנדותל, כפי שמוצגת באיור 4.

תוצאות

בניסוי טיפוסי, 20 עקומות כוח לעומת מרחקים התקבלו מאזור נתון של התא, בדרך כלל באזור perinuclear, קרוב, אבל לא על, הגרעין (בתוך ~ 2 מיקרומטר). העקומות היו מיושרות לחשבון לכל סחף מדגם על משך הזמן של המדידה ולאחר מכן בממוצע להסרת רעש שלוחה, כפי שמוצגות באיור 4. העקומות נו...

Discussion

אנחנו השתמשנו ערכים מחושבים מהמודל דו שכבתי ותאורית הרץ למודל האינטראקציה של יקוציט במחזור הדם עם קיר אנדותל. אנו כי יש לחשב את microvillus על יקוציט בקוטר של 50 ננומטר בעומס 10 PN הייתי כניסה כ 150 ננומטר לglycocalyx, רק חלק קטן מהעובי הכולל. זה מצביע על כך glycocalyx, עם מאפיינים כפי שנמ?...

Disclosures

אין ניגודי האינטרסים הכריזו.

Acknowledgements

המחברים מבקשים להודות לאלנה Lomakina, ריצ'רד Bauserman, מרגרט יונגמן, השי וקנין, ג'סיקה סניידר, כריס Striemer, Nakul Nataraj, האנג לי צ'ונג, Tejas Khire, ואריק לאם על סיועם בפרויקט זה. פרויקט זה מומן על ידי NIH # PO1 HL 018208.

Materials

NameCompanyCatalog NumberComments
שם מגיב / חומרים חברה מספר קטלוגים תגובות
הבינוני של מקוי Gibco 16600-082
עוברי עגל בסרום Hyclone SH30070
בינוני צמיחת תאי אנדותל טכנולוגיות Vec MCDB-131
תאי אדם אספו טבורי וריד אנדותל טכנולוגיות Vec PHUVEC/T-25
חומצה גופרתית JT בייקר 9681-02
מי חמצן VWR BDH3742-1
(3-aminopropyl) triethoxysilane אולדריץ 440140-100 מ"ל
איזופרופיל אלכוהול VWR BDH8999-4
טריפסין Cellgro 25-054-C1
תמיסת מלח Buffered של האנק Gibco 14175-095
sulfo-NHS-LC-ביוטין Thermo Scientific 21335
חרוזי Streptavadin Dynabeads 112.06D
MFP-3D AFM מקלט מחקר
Cantilevers Tipless Nanoworld חץ TL1-50
הצללית SD Quickutz צללית-SD
גומי סיליקון סטוקוול Elastomerics SE50-RS
30 מיליליטר מזרקים בנטון דיקינסון 309650
18 מחטי מד בנטון דיקינסון 305196
סטים מאריכים Hospira 4429-48
שסתומי 4 דרך Teleflex W21372
Caps נמלי זכר / נקבה סמית של הרפואה MX491B
משאבת peristaltic ווטסון, מרלו 401U / D
אבובי peristaltic ווטסון, מרלו 903.0016.016
מסננים סטריליים מדעי חי Pall 4652

References

  1. Clifford, C., Seah, M. Nanoindentation measurement of young's modulus for compliant layers on stiffer substrates including the effect of poisson's ratios. Nanotechnology. , (2009).
  2. Gouverneur, M., Spaan, J. A. E., Pannekoek, H., Fontijn, R. D., Vink, H. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am. J. Physiol. Heart. Circ. Physiol. 290 (1), 458-452 (2006).
  3. Hocde, S. A., Hyrien, O., Waugh, R. E. Cell adhesion molecule distribution relative to neutrophil surface topography assessed by tirfm. Biophysical Journal. 97 (1), 379-387 (2009).
  4. Lipowski, H. H. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Annals of biomedical engineering. 40 (4), 840-848 (2012).
  5. Lu, L., Oswald, S. J., Ngu, H., Yin, F. C. P. Mechanical properties of actin stress fibers in living cells. Biophysical Journal. 95 (12), 6060-6071 (2008).
  6. Pries, A. R., Secomb, T. W., Gaehtgens, P. The endothelial surface layer. Pflugers Archiv. European Journal of Physiology. 440 (5), 653-666 (2000).
  7. Spillmann, C. M., Lomakina, E., Waugh, R. E. Neutrophil adhesive contact dependence on impingement force. Biophysical Journal. 87 (6), 4237-4245 (2004).
  8. vanden Berg, B. M., Vink, H., Spaan, J. A. E. The endothelial glycocalyx protects against myocardial edema. Circulation Research. 92 (6), 592-594 (2003).
  9. Williams, T. E., Nagarajan, S., Selvaraj, P., Zhu, C. Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J. Biol. Chem. 276 (16), 13283-138 (2001).
  10. Vink, H., Duling, B. Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries. Circulation Research. 79, 581-589 (1996).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

72Bioengineeringbioengineeringglycocalyx

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved