Sign In

German Centre for Cardiovascular Research (DZHK)

13 ARTICLES PUBLISHED IN JoVE

image

Biology

Heterotopic and Orthotopic Tracheal Transplantation in Mice used as Models to Study the Development of Obliterative Airway Disease
Xiaoqin Hua 1, Tobias Deuse 1,2, Karis R. Tang-Quan 1,2,3, Robert C. Robbins 3, Hermann Reichenspurner 1,2, Sonja Schrepfer 1,2,3
1Transplant and Stem Cell Immunobiology Lab (TSI), University Heart Center Hamburg, 2CVRC, University Hospital Hamburg, 3Department of CT Surgery, Stanford University School of Medicine

This video shows and compares two experimental models to study the development of obliterative airway disease (OAD) in mice, the heterotopic and orthotopic tracheal transplantation model.

image

Biology

LAD-Ligation: A Murine Model of Myocardial Infarction
Mandy V.V. Kolk 1,2, Danja Meyberg 1,2, Tobias Deuse 1,2, Karis R. Tang-Quan 1,2,3, Robert C. Robbins 3, Hermann Reichenspurner 1,2, Sonja Schrepfer 1,2,3
1Transplant and Stem Cell Immunobiology Lab (TSI), University Heart Center Hamburg, 2CVRC, University Hospital Hamburg, 3Department of CT Surgery, Stanford University School of Medicine

This video demonstrates how to use a fast and reliable model to study pathobiological and pathophysiological processes of myocardial ischemia.

image

Medicine

Orthotopic Aortic Transplantation: A Rat Model to Study the Development of Chronic Vasculopathy
Mandy Stubbendorff 1, Tobias Deuse 1,2, Anna Hammel 1, Robert C. Robbins 2, Hermann Reichenspurner 1, Sonja Schrepfer 1,2
1University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Lab (TSI), University Hospital Hamburg, 2Stanford University School of Medicine

This video demonstrates the orthotopic aortic transplant model as a simple model to study the development of transplant vasculopathy (TVP) in rats.

image

Bioengineering

Bioluminescence Imaging for Assessment of Immune Responses Following Implantation of Engineered Heart Tissue (EHT)
Lenard Conradi 1,2, Christiane Pahrmann 1, Stephanie Schmidt 1, Tobias Deuse 1,3, Arne Hansen 2, Alexandra Eder 2, Hermann Reichenspurner 1, Robert C. Robbins 3, Thomas Eschenhagen 2, Sonja Schrepfer 1,3
1Transplant and Stem Cell Immunobiology Lab (TSI) and CVRC, University Hospital Hamburg, University Heart Center Hamburg, 2Department of Experimental and Clinical Pharmacology and Toxicology, University Heart Center Hamburg, 3CT Surgery, Stanford University School of Medicine

This video demonstrates the use of in vivo bioluminescence imaging to study immune responses after implantation of Engineered Heart Tissue (EHT) in rats.

image

Medicine

Human Internal Mammary Artery (IMA) Transplantation and Stenting: A Human Model to Study the Development of In-Stent Restenosis
Xiaoqin Hua 1,2, Tobias Deuse 1,2, Evangelos D. Michelakis 3, Alois Haromy 3, Phil S. Tsao 4, Lars Maegdefessel 4, Reinhold G. Erben 5, Claudia Bergow 5, Boris B. Behnisch 6, Hermann Reichenspurner 1,2, Robert C. Robbins 7, Sonja Schrepfer 1,2,7
1University Heart Center Hamburg, TSI-Lab, Germany, 2Cardiovascular Research Center, University of Hamburg, 3Department of Medicine, Cardiology Division, Pulmonary Hypertension Program, University of Alberta, 4Department of Medicine, Stanford University School of Medicine , 5Department of Biomedical Sciences, Institute of Physiology, Pathophysiology, and Biophysics, University of Veterinary Medicine, Vienna, 6Translumina GmbH, Hechingen, 7Department of Cardiothoracic Surgery, Stanford University School of Medicine

This video shows a model to study the development of intimal hyperplasia after stent deployment using a human vessel (IMA) in an immunodeficient rat model.

image

Medicine

Inducing Myointimal Hyperplasia Versus Atherosclerosis in Mice: An Introduction of Two Valid Models
Mandy Stubbendorff *1,2, Xiaoqin Hua *1,2, Tobias Deuse 1,2,3, Ziad Ali 4,5, Hermann Reichenspurner 2,3, Lars Maegdefessel 6, Robert C. Robbins 7, Sonja Schrepfer 1,2,3,4
1Transplant and Stem Cell Immunobiology Lab, Cardiovascular Research Center, University Hospital Hamburg, 2Cardiovascular Research Center (CVRC) and DZHK University Hamburg, 3Department of Cardiovascular Surgery, University Heart Center Hamburg, 4Center for Interventional Vascular Therapy, Division of Cardiology, Columbia University, 5Cardiovascular Research Foundation, New York, 6Karolinska Institute, Stockholm, 7Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center

This video shows two models of intimal plaque development in murine arteries and emphasizes the differences in myointimal hyperplasia and atherosclerosis.

image

Medicine

Vein Interposition Model: A Suitable Model to Study Bypass Graft Patency
Dong Wang 1,2,3,4, Grigol Tediashvili 1,2,3, Simon Pecha 4, Hermann Reichenspurner 4, Tobias Deuse 1,2,3,4, Sonja Schrepfer 1,2,3,4
1Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg, 2Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF), 3Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, 4Cardiovascular Surgery, University Heart Center Hamburg

This video demonstrates a model to study the development of myointimal hyperplasia after venous interposition surgery in rats.

image

JoVE Core

Automated Contraction Analysis of Human Engineered Heart Tissue for Cardiac Drug Safety Screening
Ingra Mannhardt 1, Umber Saleem 1, Anika Benzin 1, Thomas Schulze 1, Birgit Klampe 1, Thomas Eschenhagen 1, Arne Hansen 1
1Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)

Here, we show the generation of human engineered heart tissue from induced pluripotent stem cells (hiPSC)-derived cardiomyocytes. We present a method to analyze contraction force and exemplary alteration of contraction pattern by the hERG channel inhibitor E-4031. This method shows high level of robustness and suitability for cardiac drug screening.

image

Medicine

Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta
Grigol Tediashvili 1,2,3, Dong Wang 1,2,3,4, Hermann Reichenspurner 4, Tobias Deuse 1,2,3,4, Sonja Schrepfer 1,2,3,4
1Transplant and Stem Cell Immunobiology Lab, University Heart Center, 2Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF), 3Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research, 4Cardiovascular Surgery, University Heart Center

This article demonstrates a murine model to study the development of myointimal hyperplasia (MH) after aortic balloon injury.

image

Biology

Miniaturized Sample Preparation for Transmission Electron Microscopy
Claudio Schmidli *1,2, Luca Rima *1, Stefan A. Arnold *1,2, Thomas Stohler 1, Anastasia Syntychaki 1, Andrej Bieri 1, Stefan Albiez 1, Kenneth N. Goldie 1, Mohamed Chami 3, Henning Stahlberg 1, Thomas Braun 1
1Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 2Swiss Nanoscience Institute, University of Basel, 3BioEM lab, Biozentrum, University of Basel

An instrument and methods for the preparation of nanoliter-sized sample volumes for transmission electron microscopy is presented. No paper-blotting steps are required, thus avoiding the detrimental consequences this can have for proteins, significantly reducing sample loss and enabling the analysis of single cell lysate for visual proteomics.

image

Biochemistry

Identification of Functional Protein Regions Through Chimeric Protein Construction
Juan M. Adrian-Segarra 1, Holger Lörchner 1,2, Thomas Braun 1,2, Jochen Pöling 1,2
1Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 2Partner site Rhein-Main, German Centre for Cardiovascular Research (DZHK)

Structurally related proteins frequently exert distinct biological functions. The exchange of equivalent regions of these proteins in order to create chimeric proteins constitutes an innovative approach to identify critical protein regions that are responsible for their functional divergence.

image

Medicine

Implantation of hiPSC-derived Cardiac-muscle Patches after Myocardial Injury in a Guinea Pig Model
Liesa Castro 1,2, Birgit Geertz 3, Marina Reinsch 2,3, Bülent Aksehirlioglu 3, Arne Hansen 2,3, Thomas Eschenhagen 2,3, Hermann Reichenspurner 1,2, Florian Weinberger *2,3, Simon Pecha *1,2
1Department of Cardiovascular Surgery, University Heart Center Hamburg, 2partner site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK), 3Department of Experimental Pharmacology and Toxicology, Cardiovascular ResearchCenter, University Medical Center Hamburg-Eppendorf

Here we present a protocol for the induction of left ventricular cryoinjury followed by the implantation of a cardiac muscle patch, derived from human iPS-cell cardiomyocytes in a guinea pig model.

image

Developmental Biology

Magnetic Adjustment of Afterload in Engineered Heart Tissues
Benjamin Becker *1,2, Marita L. Rodriguez *1,2, Tessa R. Werner 1,2, Justus Stenzig 1,2, Thomas Eschenhagen 1,2, Marc N. Hirt 1,2
1Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 2DZHK (German Centre for Cardiovascular Research)

This protocol provides detailed methods describing the fabrication and implementation of a magnetics-based afterload tuning platform for engineered heart tissues.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved