This video shows the procedure for generating induced pluripotent stem cells using inducible lentivirus that express Oct4, Sox2, c-Myc and Klf4.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
SDD-AGE is a useful technique for the detection and characterization of amyloid-like polymers in cells. Here we demonstrate an adaptation that makes this technique amenable to large-scale applications.
Here we are presenting a chromatin immunoprecipitation (ChIP) procedure for genome-wide location analysis of protein isoforms that differ in a histone-binding domain. We are applying it to ChIP-Seq analysis to identify the targets of the KDM5A/JARID1A/RBP2 histone demethylase.
We demonstrate here that epigenetic reprogramming via Somatic Cell Nuclear Transfer (SCNT) can be used as a tool to generate mouse models with pre-defined T cell receptor (TCR) specificities. These transnuclear mice express the corresponding TCR from their endogenous locus under the control of the endogenous promoter.
Efficient genome engineering of Candida albicans is critical to understanding the pathogenesis and development of therapeutics. Here, we described a protocol to quickly and accurately edit the C. albicans genome using CRISPR. The protocol allows investigators to introduce a wide variety of genetic modifications including point mutations, insertions, and deletions.
This article describes a FRET-based flow cytometry protocol to quantify protein self-assembly in both S. cerevisiae and HEK293T cells.
This method is designed to follow formation of PRC2-mediated chromatin domains in cell lines, and the method can be adapted to many other systems.