A method for the incorporation of plasmid DNA into murine retinal cells for the purpose of performing either gain- or loss of function studies in vivo is presented. This method capitalizes on the transient increase in permeability of cell plasma membranes induced by the application of an external electrical field.
The function of adult-born mammalian neurons remains an active area of investigation. Ionizing radiation inhibits the birth of new neurons. Using computer tomography-guided focal irradiation (CFIR), three-dimensional anatomical targeting of specific neural progenitor populations can now be used to assess the functional role of adult neurogenesis.
Dual-phase cone-beam computed tomography (DP-CBCT) is a useful intraprocedural imaging technique for transarterial chemo-embolization treatment with drug-eluting beads of hepatocellular carcinoma. DP-CBCT has been used to perform three major steps in oncologic interventional radiology: tumor localization (see), navigation and intraprocedural catheter guidance (reach), and intraprocedural evaluation of treatment success (treat).
Intra-arterial therapies are the standard of care for patients with hepatocellular carcinoma who cannot undergo surgical resection. A method for predicting response to these therapies is proposed. The technique uses pre-procedural clinical, demographic, and imaging information to train machine learning models capable of predicting response prior to treatment.
Here, the authors showcase the utility of MULTI-seq for phenotyping and subsequent paired scRNA-seq and scATAC-seq in characterizing the transcriptomic and chromatin accessibility profiles in retina.