We demonstrate in the video a method for producing a middle cerebral artery occlusion in adult mice using an intraluminal monofilament. We also show how to evaluate the extent of cerebral infarction by 2,3,5-triphenyltetrazolium chloride (TTC) staining.
Environmental bacterioplankton are incubated with a model dissolved organic carbon (DOC) compound and a DNA labeling reagent, bromodeoxyuridine (BrdU). Afterward, DOC-degrading cells are separated from the bulk community based on their elevated BrdU incorporation using fluorescence activated cell sorting (FACS). These cells are then identified by subsequent molecular analyses.
We present a facile method to fabricate a biodegradable gelatin-based drug release platform that is magneto-thermally responsive. This was achieved by incorporating superparamagnetic iron oxide nanoparticles and poly(N-isopropylacrylamide-co-acrylamide) within a spherical gelatin micro-network crosslinked by genipin, in conjunction with an alternating magnetic field application system.
This study presents a methodology to prepare 3D, biodegradable, foam-like cell scaffolds based on biocompatible side-chain liquid crystal elastomers (LCEs). Confocal microscopy experiments show that foam-like LCEs allow for cell attachment, proliferation, and the spontaneous alignment of C2C12s myoblasts.
Fluid-feeding insects have the ability to acquire minute quantities of liquids from porous surfaces. This protocol describes a method to directly determine the ability for insects to ingest liquids from porous surfaces using feeding solutions with fluorescent, magnetic nanoparticles.
The method was designed to investigate the role of inhibition of return (IOR) in regressive eye movements during reading. The focus is on differentiating between regressions triggered as a result of comprehension difficulty versus those triggered from oculomotor error, including the role of IOR in the two types of regressions.
Quantitative structure-activity relationship (QSAR) modeling is a representative bioinformatics-assisted method in toxicological screening. This protocol demonstrates how to computationally assess the risks of endocrine disruptors (EDs) in aquatic environments. Utilizing the OECD QSAR Toolbox, the protocol implements an in silico assay for analyzing toxicity of EDs in fish.
This protocol demonstrates the preparation of a photorheological material that exhibits a solid phase, various liquid crystalline phases, and an isotropic liquid phase by increasing temperature. Presented here are methods for measuring the structure-viscoelasticity relationship of the material.
Here we present a protocol for in vitro isolation of multiple glial cell populations from a mouse CNS. This method allows for the segregation of regional microglia, oligodendrocyte precursor cells, and astrocytes to study the phenotypes of each in a variety of culture systems.
Ensemble force spectroscopy (EFS) is a robust technique for mechanical unfolding and real-time sensing of an ensemble set of biomolecular structures in biophysical and biosensing fields.
Mice and rats are surgically implanted with remote temperature transponders and then habituated to the testing environment and procedure. Changes in muscle temperature are measured in response to pharmacological or contextual stimuli in the home cage or during prescribed physical activity (i.e., treadmill walking at a constant speed).