Accedi

Many proteins form complexes to carry out their functions, making protein-protein interactions (PPIs) essential for an organism's survival. Most PPIs are stabilized by numerous weak noncovalent chemical forces. The physical shape of the interfaces determines the way two proteins interact. Many globular proteins have closely-matching shapes on their surfaces, which form a large number of weak bonds. Additionally, many PPIs occur between two helices or between a surface cleft and a polypeptide chain or string.

Various computational and biochemical methods are used to study protein interfaces. Laboratory methods, such as affinity purification, mass spectrometry, and protein microarrays, can be used to identify new interactions. Co-immunoprecipitation of proteins and yeast two-hybrid screening are widely used to provide evidence on whether two proteins interact in vitro. Computer programs can predict PPIs based on similar interactions found in other proteins by comparing protein sequences and three-dimensional structures. Other computational approaches, such as phylogenetic profiling, predict PPIs based on the coevolution of binding partners. Additionally, gene fusion analysis is used to predict interaction partners by finding protein pairs that are fused in the genome of other organisms.

Proteins typically interact with multiple partners either at the same or different times, and they may contain more than one interaction interface. Many proteins form large complexes that perform specific functions that can only be carried out by the complete complex. In some cases, these protein interactions are regulated; that is, a protein may interact with different partners based on cellular needs. Further computational and statistical analyses sort such interactions into networks, which are curated in online interactome databases. These searchable databases enable users to study specific protein interactions, as well as design drugs that can enhance or disrupt interactions at the interface.

Tags

Based On The Given TextThe Most Relevant Keywords Are Protein protein InterfacesProtein InteractionsProtein ComplexesStructural BiologyBioinformaticsComputational Biology

Dal capitolo 6:

article

Now Playing

6.2 : Protein-Protein Interfaces

Protein Function

12.4K Visualizzazioni

article

6.1 : Siti di legame del ligando

Protein Function

7.5K Visualizzazioni

article

6.3 : Siti di legame conservati

Protein Function

1.6K Visualizzazioni

article

6.4 : Cofattori e coenzimi

Protein Function

10.8K Visualizzazioni

article

6.5 : Transizioni Allosteriche Cooperazioni

Protein Function

2.3K Visualizzazioni

article

6.6 : Protein chinasi e fosfatasi

Protein Function

3.7K Visualizzazioni

article

6.7 : GTPasi e loro regolamentazione

Protein Function

2.2K Visualizzazioni

article

6.8 : Regolatori proteici legati covalentemente

Protein Function

1.6K Visualizzazioni

article

6.9 : Complessi proteici con parti intercambiabili

Protein Function

1.8K Visualizzazioni

article

6.10 : Funzione meccanica delle proteine

Protein Function

2.0K Visualizzazioni

article

6.11 : Funzione strutturale delle proteine

Protein Function

2.7K Visualizzazioni

article

6.12 : Reti proteiche

Protein Function

2.1K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati