JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

白内障は世界の失明の主要な原因である。太陽紫外線(UVR)は白内障開発のための主要な危険因子である。遠くUVR-B誘発白内障の動物モデルが開発されました。 UVR、定量的RT-PCR法と免疫組織化学への暴露:この記事では、白内障の調査のための方法を説明します。

要約

白内障は、世界1の失明の主要な原因である。世界保健機関(WHO)は、光の伝達を妨げ、眼のレンズの混濁として白内障が定義されています。白内障は、糖尿病、喫煙、紫外線照射(UVR)、アルコール、電離放射線、ステロイドや高血圧に関連付けられている多因子疾患である。強い実験2-4および疫学的証拠は、UVR 5,6は白内障引き起こすことがあります。我々は麻酔7及び非麻酔動物8の両方でB UVR誘発白内障のための動物モデルを開発しました。

白内障のための唯一の治療法は手術ですが、この治療法はすべてにアクセスすることはできません。それは10年間の白内障の発症の遅延が50%9で白内障手術の必要性を減らすことができると推定されている。白内障の発症を遅延させるには、それは白内障形成のメカニズムを理解し、効果的な予防戦略を見つけるために必要とされるegies。白内障開発のためのメカニズムの中で、アポトーシスは、ヒトおよび動物10の白内障の開始に重要な役割を果たしている。我々の焦点は、最近白内障開発8,11,12するためのメカニズムとしてレンズのアポトーシスとなっています。これはアポトーシス経路上のUVRの効果の理解は白内障防ぐための新たな医薬品の発見の可能性を提供することが予想されます。

本稿では、実験的にUVR-Bへのin vivoでの暴露によって誘導することができる方法白内障について説明します。さらにRT-PCR法と免疫組織化学は、UVR-B誘発白内障の分子メカニズムを研究するためのツールと​​して提示されます。

プロトコル

1。紫外線照射

  1. 暴露前の15分には、腹腔内注射で90 mg / kgのKetalar(ケタミン)及び10 mg / kg Rompun(キシラジン)の混合物で雌Sprague-Dawleyラットを麻酔。
  2. ラットの拘束に動物を置き、トランクスクイズ13を発生させることなく、ラットの固定までベルトを締めます。
  3. 散瞳を誘導するために、ラットの両眼にMydriacyl(トロピカミド)、10 mg / mlのを植え付ける。
  4. 片目が半値全幅は10nmと300nmの14でUVRの狭いビームに対して位置決めされるように動物を置き、黒いテープで反対側の眼を遮蔽する。
  5. 15分15のための300 nmにおけるサブスレッショルド·用量1 KJ / m 2の UVR-Bに一方的にラットを公開します。

2。解剖

  1. 予め決められた露光後インターバル(1、5、24および120時間)の後、炭で6週齢のラット(体重<200グラム)を犠牲にするn個の二酸化窒息と頸椎脱臼。
  2. 摘出するの目。その後、後方側を、目の角膜を上にして置き。次に、強膜に非常に近いレンズの損傷を防ぐために、強膜に対して接線方向にパンチ27ゲージのカニューレを適用することにより、最小限の穴とプッシュ。その後、強膜の後部をオフに持ち上げることができるまで、ちょうど縁の後ろに周方向に切断するために眼科手術用はさみのペアを使用しています。その後、鈍湾曲したピンセットでレンズを持ち上げます。
  3. 5〜10分を超えない平衡塩溶液中でレンズを保持し、顕微鏡下でレンズ赤道から毛様体の残骸を削除。

3。定量的RT-PCR

  1. 350μlのRA1の溶解緩衝液(NucleoSpin RNA IIの全RNA単離キット)および2mlのエッペンドルフチュー​​ブに3.5μLのβ-メルカプトエタノールのミックスにレンズを置きます。
  2. 室温で30分間の間、このミックスでレンズを保管してください。
  3. レンズをホモジナイズレンズの唯一のハード核まで針がレンズ(皮質、レンズのカプセルが溶解バッファー中で溶解されている)から残っている。ミックスから核を取り除きます。
  4. ストアサンプル直ちに-70℃
  5. サンプルを解凍し、プロトコル "培養細胞や組織からの全RNA精製"(NucleoSpin RNA IIの全RNA単離キット)に従う。
  6. ストアRNAサンプル-70℃
  7. 2分間、95℃、40サイクルのステップ2:各試料からのDNAの十分な除去を確認するには、以下の条件(ステップ1でPCRを実行し95℃で20秒、55℃20秒、72℃ 20秒のC;ステップ3:7分72℃)、p53のDNA特異的プライマーを用いて、フォワード5'-ACCCTCTGACCTTTTTCCCA-3 'と逆方向5'-TGCTGGGATCTTAGGCACTC-3'およびTaq DNAポリメラーゼ(dNTPack)、製造によるプロトコル。予想されたPCR産物は、243塩基対である。
  8. 243塩基対のDNA特異的なPCR産物を検出するために、1.5%アガロースゲル電気泳動を実行します。準備するにはTBE緩衝液中で1.5%アガロースゲルはアガロースの3.75グラムを取るとTBEバッファー250mlにそれを解決する。臭化エチジウム(0.5 mg / ml)を1.5%アガロースゲル溶液500mlで500μlを添加する。マイクロ波オーウェンに、混合物を加熱してアガロースを解決するためにかき混ぜる。

試料はいずれも1.5%アガロースゲル電気泳動上の任意のDNA特異的なPCR産物を明らかにするために持っていません。

  1. RNAサンプルの濃度(1μL)および260 nm(RNA)と光度計ND-1000分光光度計で280nmの(タンパク質)におけるサンプルの吸光度比を測定します。 RNAサンプルの吸光度のタンパク質に対する比のRNAが2.0以上である場合、RNAサンプルは純粋です。 RNAサンプルの吸光度比が2.0より低い場合は、RNA精製ステップ3.5をやり直してください。
  2. プロトコル第1ストランド cDNA合成キット(RT-PCRのための第1ストランド cDNA合成キット)に続く1μgに相当するRNAサンプルの音量を取ると、cDNAを合成。
  3. -20℃でcDNAサンプルを保存(期間1年以上とするため、-70℃で保存)。
  4. iCycler MyiQ単色リアルタイムPCR検出システムで、定量的リアルタイムPCRを実行します。負荷は、1μlのcDNA試料は、TaqMan遺伝子発現マスターミックス、カスパーゼ3のためのTaqMan遺伝子発現アッセイを96ウェルプレートに三連の指示を製造する方法。負荷は、1μlのcDNA試料は、TaqMan遺伝子発現マスターミックス、18sのためのTaqMan遺伝子発現アッセイを持つ別の96ウェルプレートにトリプリケート命令(のTaqMan遺伝子発現アッセイプロトコル)を製造する方法。直列3ランダムに選ばれた非露光レンズからのcDNAの一部を希釈します。 96ウェルプレート中のサンプルからのcDNAと共に希釈を実行します。
  5. 結果の定量化のための標準曲線法を使用します。しきい蛍光におけるサイクル数はMyiQソフトウェアの測定として使用されます。キャリブレータの相対濃度の関数としてしきい値でサイクル数を表現する標準曲線は、esです各プレートで連続希釈用tablished。 3非処理レンズ試料からのcDNAは、キャリブレーションのために使用された。測定されたcDNAサンプルの相対濃度を得るために標準曲線と各サンプルのサイクル数のしきい値を関連付けます。最後に、cDNAの内部統制18Sに対するcDNAターゲットの相対濃度を関連付けることにより、標的遺伝子の発現レベルを取得します。

4。免疫組織化学的染色

  1. 固定
    1. PBS中目(; pH7.4のリン酸緩衝生理食塩水)を解剖する。
    2. 20分間氷冷4%パラホルムアルデヒド(PFA)で満たされたチューブに目を入れた。前日に4%PFAを準備します。 4℃で保存し、使用時まで。 PFAは、約1週間新鮮です。
    3. マイクロピペットでPFAを削除します。その後、20分間氷冷PBSで洗浄する。
    4. ℃で一晩4でスクロース30%で目を入れた。
    5. (10月)最適切削温度で満たさカップに目を入れて、媒体(ティッシュ- Tek社)。セクショニングの適当な位置に目を置いた。
    6. ドライアイスの上に、OCT-培地中で凍結する。
    7. -70℃で保存し、使用時まで。
  2. セクショニング
    1. 適切な平面にクライオセクショニングの目の位置を決めます。
    2. 各レンズの中央部から35μm厚半ば矢状断面をカットします。異なるセクションの同じ核を染色避けるために順次セクションの間には、少なくとも6つのセクションを破棄します。
    3. セクションがカットされたら、そっとその上にスライドを配置します。セクションでは、スライドに固執する必要があります。
    4. 使用前に空気乾燥にスライドしたままにします。必要になるまでスライドを-20℃で保存することができます。
  3. 蛍光免疫組織化学
    1. サンプルは室温(5〜10分)を達成しましょう​​。
    2. PAP-ペン(Invitrogen)を用いて試験片の周りにエッジを描画する。
    3. しばらく(10分)の境界線に乾かします。
    4. 顕微鏡スライドラベルを付けます。
    5. 1に水分補給×Pを15分間のBS。
    6. 30分間の標準ブロック·ソリューションで透過処理。
    7. 標準ブロック·溶液中で1:3,000に希釈し、一次抗体(セルシグナリングテクノロジー株式会社ウサギポリクローナル、切断カスパーゼ-3抗体Asp175 966​​1)を追加します。
    8. 一晩4℃で加湿チャンバーに保管してください。
    9. (3×5分)、ピペッティングによりまたは大浴場(> 15分、1月2日変更)中に浸漬することにより、PBS中で洗浄します。
    10. 標準ブロック·溶液中で1:300に希釈した二次抗体(特定の吸収/発光スペクトルを持つ抗ウサギ二次抗体)を追加します。
    11. (3×5分)、ピペッティングによりまたは大浴場(> 15分、1月2日変更)中に浸漬することにより、PBS中で洗浄します。
    12. PAPペンスメアを拭き取ってください。
    13. 3時間室温で加湿チャンバー内で保管してください。光への曝露を避ける。
    14. Vectashieldのドロップを追加して、スライドにカバースリップを置く。泡を作ることは避けてください。
    15. Vectashield硬化(〜20分)をしましょう​​。
    16. セクションI保つ分析するまでダークをn。
    17. すべての制御セクションは、一次抗体の非存在下で処理されます。
    18. 蛍光顕微鏡下で数時間以内に結果を探してください。
    19. 片側核船首から各レンズの反対側の核弓に上皮細胞の核を数える。青のすべての水晶体上皮核と緑におけるカスパーゼ3陽性核を見て二次抗体の放出に適合する標準フィルタを表示するには、標準の青のフィルタを適用します。
    20. すべての水晶体上皮核および陽性核の数を記録します。セクションごとに細胞を三回を数える。

Access restricted. Please log in or start a trial to view this content.

結果

測定値の変動のさまざまな源は分散分析を用いて推定された、それは動物ごとに3つの測定値を考慮すると測定のための分散は動物のそれの15%のオーダーであることがわかった。したがって、レンズ全体の分析を考慮すれば、精度を向上させることはできません。直交テストは120時間の待ち時間の間隔対短い待ち時間間隔のカスパーゼ-3メッセージの統計学的に有意なコントラストを明らか?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

本稿では、UVR-B誘発白内障の間に発生する分子事象を研究する有効な方法について説明します。

生体 UVR誘発性白内障使用可能なほとんどの情報がアルビノSprague-Dawleyラット7、16、17、18、19日の実験から得られたことを、考慮して、現在の研究ではアルビノSprague-Dawleyラットを使用することを決めた。ラットの年齢は6週齢であった。性別は男性...

Access restricted. Please log in or start a trial to view this content.

開示事項

特別な利害関係は宣言されません。

謝辞

sのOCH Drottning Viktorias Frimurarstiftelse:この作品は、カロリンスカ研究所KID-資金調達、スウェーデン放射線防護機関、カロリンスカ研究所アイ研究財団、ガンOCH BERTIL Stohnes Stiftelse、聖エリックの眼科病院研究財団、Ögonfonden、KonungグスタフVによってサポートされていました。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
試薬の名称 会社 カタログ番号 コメント(オプション)
Ketalar ファイザー 150086 50 mg / mlの
Rompun バイエル 022545 20 mg / mlの
Oculentumシンプレックス Apoteket、スウェーデン 336164 5グラム
Mydriacyl アルコン 00352 10 mg / mlの
平衡塩類溶液アルコン 0007950055
3.5 ulのβ-メルカプトエタノール
NucleoSpin RNA IIの全RNA単離キットマシュレ·ナーゲル社&株式会社、デューレン、ドイツ 740955.50
p53のDNA特異的プライマー biomers.net社カスタムメード
Taq DNAポリメラーゼ、dNTPack ロッシュ 04 728 866 001
アガロースシグマ A5093
エチジウムブロマイド溶液0.5 mg / mlのシグマ E1385
ナノドロップND-1000分光光度計の製品
RT-PCRのための第1ストランド cDNA合成キット(AMV) ロシュ·ダイアグノスティックス社 11 483 188 001
iCycler MyiQ単色リアルタイムPCR検出システムバイオ·ラッドラボラトリーズ
96ウェルプレートザルスタット 72.1979.202
のTaqMan遺伝子発現のマスターミックスアプライドバイオシステムズ 4369016
カスパーゼ3のためのTaqMan遺伝子発現アッセイアプライドバイオシステムズ Rn00563902_m1
18sのためのTaqMan遺伝子発現アッセイアプライドバイオシステムズ Hs99999901_s1
MyiQソフトウェアバイオ·ラッドラボラトリーズ
切断されたカスパーゼ-3(Asp175) セルシグナリング技術 9661
抗ウサギIgG抗体アブカム Ab6798
スクロースシグマアルドリッチ 84097
Vectashield ベクターラボラトリーズ
ユニバーサル顕微鏡Axioplan 2イメージングカールツァイス
パラホルムアルデヒドシグマアルドリッチ 441244
10×TBEバッファープロメガ V4251

参考文献

  1. Brian, G., Taylor, H. R. Cataract blindness: challenge for the 21 st century. Bulletin of the World Health Organization. 79, 249-256 (2001).
  2. Jose, J. G., Pitts, D. G. Wavelength dependency of cataracts in albino mice following chronic exposure. Experimental Eye Research. 41, 545-563 (1985).
  3. Söderberg, P. G. Acute cataract in the rat after exposure to radiation in the 300 nm wavelength region. A study of the macro-, micro- and ultrastructure. Acta Ophthalmol. (Copenh). 66, 141-152 (1988).
  4. Meyer, L., Dong, X., Wegener, A., Söderberg, P. G. Dose dependent cataractogenesis and Maximum Tolerable Dose (MTD 2.3:16) for UVR - B induced cataract in C57BL/6J mice. Experimental Eye Research. 86, 282-289 (2008).
  5. McCarty, C., et al. Assessment of lifetime ocular exposure to UV-B: the Melbourne visual impairment project. Developments in Ophthalmology. 27, 9-13 (1997).
  6. Sasaki, H., et al. Localization of cortical cataract in subjects of diverse races and latitude. Invest. Ophthalmol. Vis. Sci. 44, 4210-4214 (2003).
  7. Söderberg, P. G. Experimental cataract induced by ultraviolet radiation. Acta Ophthalmol. (Copenh. 68, Suppl 196. 1-77 (1990).
  8. Galichanin, K., Löfgren, S., Bergmanson, J., Söderberg, P. Evolution of damage in the lens after in vivo close to threshold exposure to UV-B radiation: cytomorphological study of apoptosis. Exp. Eye Res. 91, 369-377 (2010).
  9. McCarty, C. A., Taylor, H. R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 35, 21-31 (2002).
  10. Li, W. C., et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. Journal of Cell Biology. 130, 169-181 (1995).
  11. Michael, R., Vrensen, G., van Marle, J., Gan, L., Söderberg, P. G. Apoptosis in the rat lens after in vivo threshold dose ultraviolet irradiation. Investigative Ophthalmology and Visual Science. 13, 2681-2687 (1998).
  12. Ayala, M. N., Strid, H., Jacobsson, U., Söderberg, P. G. p53 Expression and Apoptosis In The Lens After Ultraviolet Radiation Exposure. Investigative ophthalmology of visual science. 48, 4187-4191 (2007).
  13. Galichanin, K., Wang, J., Lofgren, S., Soderberg, P. A new universal rat restrainer for ophthalmic research. Acta Ophthalmol. 89 (1), (2011).
  14. Ayala, M. N., Michael, R., Söderberg, P. G. In vivo cataract after repeated exposure to ultraviolet radiation. Experimental Eye Research. 70, 451-456 (2000).
  15. Söderberg, P. G., et al. Toxicity of ultraviolet radiation exposure to the lens expressed by maximum tolerable dose (MTD). Developments in Ophthalmology. 35, 70-75 (2002).
  16. Michael, R. Development and repair of cataract induced by ultraviolet radiation. Ophthalmic Research. 32, 1-45 (2000).
  17. Löfgren, S. Cataract from ultraviolet radiation. , Karolinska Institutet. Stockholm. (2001).
  18. Ayala, M. N. Influence of exposure patterns and oxidation in UVR induced Cataract. , Karolinska Institutet. Stockholm. (2005).
  19. Dong, X. Safety limit estimation for cataract induced by ultraviolet radiation. , Karolinska Institutet. Stockholm. (2005).
  20. Löfgren, S., Michael, R., Söderberg, P. G. Impact of age and sex in ultraviolet radiation cataract in the rat. Investigative Ophthalmology and Visual Science. 44, 1629-1633 (2003).
  21. Ayala, M. N., Michael, R., Söderberg, P. G. Influence of exposure time for UV radiation-induced cataract. Investigative Ophthalmology and Visual Science. 41, 3539-3543 (2000).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

69 UVR A B RT PCR PCR

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved