JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • プロトコル
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、吸引脂肪や骨格再生を評価するための重要な4ミリメートルサイズの頭蓋冠欠損の作成から脂肪由来の間質細胞の単離を説明します。

要約

頭蓋顔面骨格の修復および再生には、幹細胞を用いた細胞ベースのアプローチによるde novoの組織形成の約束を提供しています。脂肪由来間質細胞(ASC)は、骨形成軟骨、脂肪細胞、筋原性と分化を受けることができる多能性幹細胞の豊富な供給源であることが証明された。多くの研究では、細胞送達のための様々な足場生体材料の使用により、生体内でのこれらの細胞の骨形成能を検討されている。それが実証されている骨伝導性ハイドロキシアパタイトでコーティングされたポリ(乳酸-co-グリコール酸)(HA-PLGA)のASCと足場シード、臨界サイズの頭蓋冠欠損、自発受けすることができない点で定義されている欠陥を利用することにより、動物の生涯にわたり癒し、効果的に堅牢な骨再生を表示することができます。 in vivoモデルこれは、骨組織を再生することを目的としたトランスレーショナルアプローチの根拠を示しています-携帯コンポーネントおよび生物学的マトリックス。このメソッドは、特定の組織の欠損の修復に向けた前駆細胞の究極的な臨床応用のためのモデルとして機能します。

プロトコル

1。細胞分離および増殖

  1. すべての患者の同意と実験プロトコルはスタンフォード大学の治験審査委員会(プロトコル#2188と#9999)によって検討され、承認された。
  2. 一般的/局所麻酔下での選択科目lipoaspiration手続きからヒト皮下脂肪組織を取得します。
  3. 吸引脂肪の2つの層( 図1A)があるでしょう。上清は、処理細胞物質の大半が含まれています。底層は、主に生理食塩水が注入される。 脂肪由来間質細胞は、いずれかの層から採取したが、収量は清からはるかに大きいことができます。
  4. 間質血管画分(SVF)を分離し、1Xの等量で広範囲に脂肪吸引を洗うベタジンずに1×PBS(x1)と等量のに続いて2.5%ベタジン(x2)を含む生理食塩水(PBS)、リン酸緩衝。沈殿に洗浄を可能にします。
  5. 滅菌TEを維持するように注意してください処理されたヒト組織による汚染が起こることができるようにプロセス全体chnique。
  6. 底層を吸引除去し、各洗浄後に破棄します。
  7. 50ミリリットルBDファルコンコニカルチューブに脂肪組織のアリコート15ミリリットル。
  8. 37℃ハンクス液でフィルタリング0.075%タイプIIコラゲナーゼの等量(15ml)中(HBSS)℃の水浴中で60分間一定の攪拌下(約180 /分を振る)と脂肪組織を消化 - 各チューブに15分ごとに換気を行ってください。
  9. 15ミリリットルPBSで4℃で5分間1,000 rpmで10%(ウシ胎児血清)FBS、遠心分離を含有する酵素活性を中和℃で高密度SVFペレットを得た。ペレットは、脂肪由来の間質細胞と赤血球のミックスになります。
  10. ペレットを中断することなく、上清を捨てる。
  11. 伝統的な増殖培地(ダルベッコ改変イーグル培地[DMEM] / 10%FBS / 1%ペニシリン - ストレプトマイシン溶液)10ml中にペレットを再懸濁します。
  12. フィルタサスペンション細胞残渣を除去するために100μmナイロンセルストレーナーを通してシオン。
  13. 1クリーン50mlコニカルチューブに3を兼ね備えています。 4℃で5分間1,000 rpmで遠心する
  14. ペレットを中断することなく、上清を捨てる。
  15. 伝統的な増殖培地5mlにペレットを再懸濁し
  16. 1 10cmプレートまたは1 15cmのプレートのための5つの50ミリリットルconicalsごとに2つの50ミリリットルconicalsを兼ね備えています。
  17. 37°C/21%O 2、5%CO 2で一晩初代培養を確立します。
  18. 一晩インキュベートした後、残留非付着赤血球を除去するためにPBSでプレートを洗浄する。得られた細胞集団は、脂肪由来の間質細胞である。
  19. 37°C/21%O 2、5%CO増殖培地中2で自発的分化を防止するためのサブコンフルエントレベルで細胞を維持。細胞は一般的に50%コンフルエントで播種したときに定期的な増殖培地で3〜4日ごとに分割する必要があります。
ve_title "> 2。足場の準備

  1. 足場は、カリフォルニア大学ロサンゼルス校博士ミンリーによって作られた - 歯学部。
  2. PLGAの足場は、溶媒キャストおよび粒状浸出法によりポリ85/15(乳酸-co-グリコール酸)(固有粘度= 0.61(dl / g)で、バーミンガム·ポリマーズ)から作製した。
  3. PLGA /クロロホルムソリューションは92%の気孔率を(体積分率)を得るために、200から300μmの直径のスクロースと混合し、テフロン製の型に薄いシート状に圧縮した。
  4. 一晩凍結乾燥した後、足場がスクロースを溶解させるために二重蒸留(DD)のH 2 O 3の変更に浸漬し、ゆっくりと精密チップ·スパチュラでテフロン板から削除されます。
  5. 微粒子浸出した後、すべての足場は蒸留H 2 Oの3回のすすぎに続いて、30分ごとに50%、60%、70%エタノールに浸漬して消毒した
  6. すべての足場は、層流フード下で乾燥した。
  7. 足場製作、sの後にcaffoldsは、アパタイトを被覆した。
    1. SBF(擬似体液)溶液は、ヒト血漿のそれの5倍であったイオン濃度で調製した。すべてのソリューションは0.22μmのPES膜(ナルゲン)を通して濾過滅菌だった。直ちにコーティングプロセスの前に、乾燥したPLGAの足場は濡れおよびコーティングの均一性を向上させるためにグロー放電、アルゴンプラズマエッチング(Harrickサイエンティフィック)に供した。
    2. エッチングされたPLGA足場はその後37℃でインキュベートしたSBF°のMg 2に続いて12時間水ジャケットインキュベーターの中でC、+とHCO 3 - 37℃でさらに12時間のための無料のSBF 2℃穏やかに撹拌しながら。
    3. コーティングされたPLGAの足場は、層流フード内で乾燥させ、70%エタノールで消毒し、過剰の塩化ナトリウム溶液を洗い流すために、無菌ddH 2 Oで穏やかに洗浄した。
    4. アパタイトコーティングの完全性は、走査型電子顕微鏡(SEM)を用いて解析した。アパタイトでコーティングされたSCAffoldsは、SEMスタブ(テッド·ペラ)に搭載され、導電性を向上させるために炭素で被覆した。二次電子モードは、SEM(FEI /フィリップスXL-30)観察中に適用された。エネルギー分散X線スペクトルは、アパタイト構造の元素組成を確認するために得られた。

3。細胞播種

  1. サブ合流レベルに到達すると、PBS(×2)で細胞を洗浄し、トリプシン処理。
  2. シードするために定量化するために細胞数を数える
  3. 1.5×10 5個の細胞を持つプレカット4.0 mm径の足場の上にシード。
    1. 96ウェルプレートのウェルに置き、個々の足場
    2. メディアの20μlあたり約1.5×10 5細胞の濃度との定期的な増殖培地で再懸濁細胞
    3. 足場と30分間、細胞培養インキュベーターに場所に直接ピペットで20μlの。
    4. 30分後、メディアを200μl加え、細胞がインキュベートすることができます手術前に一晩で足場
    5. それは、大半が足場上に添付するのを確実にするでしょう十分な細胞数を播種すると足場の上に細胞の接着性を確保する必要はありません。これは、生物発光と組織学的分析を用い in vivo 弊社ラボで検証されています。

4。頭蓋冠の欠陥の生成と生体内注入時

  1. 麻酔カクテルを持つ成人(60日齢)のCD-1ヌードマウスを麻酔。 (ケタミン/キシラジン/アセプロマジン)50%濃度(0.9%NaClで1:1希釈)で、または機関プロトコルあたりの推奨麻酔薬レジメンごと。 hASCsが免疫反応を引き起こすことはありませんので、これらのマウスは、無胸腺です。
    1. 投与量:塩酸ケタミン(80 mg / kg)を、キシラジン(2.5 mg / kg)をアセプロマジン(2.5 mg / kg)を
    2. 効果の持続時間:約30分
  2. 外科的に動物をドレープと手術を殺菌ベタジンおよびアルコール(×3)と敷地前に右頭頂骨を露出させるために動物の頭皮の正中矢状切開を作るために軟膏を使用して、マウスの目を覆う。鈍スクレイピング( 図1B)と右頭頂骨から頭蓋骨膜を取り除きます。
  3. 無菌性ダイヤモンド被覆の穿孔ドリルビットを使用して、右の非縫合関連する頭頂骨における一方的な4 mmの全層欠損を作成します。 細心の注意を払ってマウス頭蓋冠の厚さに応じて基本なる硬膜(図1B)を乱さないように注意しなければなりません <0.3ミリメートルです。
  4. 注入前に、培地由来成長因子の移動を防止するために滅菌PBSで足場をすすいでください。
  5. 欠損部に足場を置きます。
  6. 最後に、皮膚が閉じ縫合および確立術後のプロトコルごとに動物を監視します。
  7. 術後、 例えば 、必要に応じて動物の世話·プロトコル監督として確立鎮痛薬を使用してください。ブプレノルフィン0.1 mgの/ Kグラム。

5。類骨形成の定量

  1. MicroCTをマウスで行った後、3次元画像は前述の1としてMicroViewとソフトウェアを使用して再建された。
  2. Adobe Photoshopを使用して、画像は標準の高さ大きさとされた。
  3. 魔法の杖の機能を使用すると、ピクセルは頭蓋冠の欠陥を測定した。
  4. 欠陥の割合治癒はその後のCTスキャン頭蓋冠欠損面積を測定し、画素数を決定し、元の欠陥の画素数で割って算出された
  5. MicroCTが使用できない場合はそのため、代替は、Adobe Photoshopを使用し、組織学のために決定された時点で頭蓋を収穫しています。
  6. 類骨形成を示すアニリンブルーとPentachromeような組織学的な汚れを使用して、欠陥のスパンに沿った複数のセクションでは、ステンドグラスであるべき
  7. Adobe Photoshopの、ではありませんすべてのエリア外に作物を使用して頭蓋冠欠損における
  8. 魔法の杖の機能を使用して、欠陥の領域でのde novo骨形成の画素数を決定し、コントロールまたは他の変数と比較します。

6。代表的な結果

脂肪組織は、臨床応用のための前駆細胞の生成に重要な役割を果たす可能性を秘めています。脂肪組織は、最小限の罹患率と死亡率を伴う比較的簡単な手順で収穫することができ、容易に利用可能な供給があるという点でユニークな利点を持っています。組織を採取し、収集されると、我々のプロトコルは、 図2に概説されている。脂肪由来の間質細胞は、洗濯の一連の手順、コラゲナーゼ消化し、遠心分離により単離されている。細胞が培養に播種されると、それらは、拡大して、in vitroで種々の分化プロトコルに入れ、またはin vivoで直接配置することができます。

C言語4ミリメートル臨界サイズの頭蓋冠欠損のreationは私たちの脂肪由来の間質細胞の骨分化能力を試験するin vivoモデル簡単にアクセスして、再現性を提供します。 MicroCTを使用することにより、我々は、in vivoでの骨格組織の形成に従うと、私たちの介入の進捗状況( 図3)を追跡することができます。重要なサイズの頭蓋冠の欠陥は、動物の生涯中に治らないし、我々は欠陥の約90%が8週間程度残る特許を参照してください。足場自体が(議論を参照)骨形成誘導特性を持っており、いくつかの骨の再生を誘導する能力を示してきた。細胞を含まない足場の配置の典型的な結果は、欠陥の約3分の1は、8週目でのde novo骨形成を持っていることを示しています。 variabはあるものの、脂肪由来の間質細胞の増強では、完全に欠陥の三分の二以上が約8週間で骨の再生が表示されます各動物と手術の間ility。骨格組織の形成は、組織学を介して定量化し、典型的な結果は、アニリンブルーとPentachrome染色( 図3C)を介してASCを持つサンプルの増加類骨形成を示すことができます。加えて、我々は移植されたヒト細胞が頭蓋冠欠損におけるde novoの骨形成( 図3D)の領域の近くに2週間でin vivoで染色を示すGFP標識hASCsの使用を介して基礎となるのde novo骨形成に寄与していることを示している。また、欠陥の面積( 図3E)でヒト細胞の生存および貢献を示すために、ヒト特異的抗体を用いて免疫組織化学を使用しています

figure-protocol-6034
図1 -脂肪吸引は、2つの層を持っています。最上層は、脂肪細胞とPRの大部分が含まれて底層はlipoaspiration手順の実行時に使用し生理食塩水が入っている間に細胞材料をocesses。 B - 基礎と硬膜を破壊することなく、右頭頂骨、4ミリメートルサイズの頭蓋冠の重要な欠陥のその後の創作を分離するために、頭蓋骨膜上に正中切開を介して頭蓋冠欠損の創造。

figure-protocol-6364
図2の進出、分化、in vitro および in vivo での使用に脂肪由来の間質細胞の単離から脂肪吸引の収穫とアプリケーションの概要

figure-protocol-6609
図3 HYDを通してASCのアプリケーションとの臨界サイズの頭蓋冠欠陥 in vivoでの治癒示す-MicroCTroxyapatitie足場(下段)。 ASCの群で有意に増加治癒を示すMicroCTから骨性治癒の定量 - コントロールは細胞(中段)Bなしの足場の配置と全く足場と欠陥(上段)と、欠陥を含んでいません。 C - アニリンブルーとPentachrome染色を通じて、ASCグループ(下の行)の増加した類骨形成を示す組織学。アニリンブルー、類骨汚れダークブルー用とPentachrome、黄色の骨汚れ用。 D - GFPで標識hASCSは、足場上に播種し、頭蓋冠欠損部に配置し、2週目に屠殺した。染色は欠陥の領域で再生に貢献ヒト細胞を示すため、GFP標識した抗体を用いて行った。 E - 2週間で欠陥の領域でヒト細胞の有病率を示すヒト核抗原の免疫組織化学では、 拡大図を表示するには、ここをクリックしてください

ディスカッション

吸引脂肪から脂肪由来の間質細胞の単離2は 、これらの細胞は、細胞系統の多種多様に分化してきた。脂肪組織は中胚葉起源からであり、したがって、多能性脂肪由来間質細胞は、中胚葉系統に向かって可能性が高いアプリケーションで最も効果的であろう。骨格組織を生成する能力は、感染症、拒絶反応、および時間3以上の破壊を含む自家移植と合成材料の固有の限界のた...

開示事項

特別な利害関係は宣言されません。

謝辞

我々は、我々の研究の支援とコラボレーションのための博士ジョージ·コモンズ博士とディーンVistnesに感謝したいと思います。セントジョセフマーシー病院GMEによってサポートされているこの作品は、歯科および頭蓋顔面研究助成1 R21はDE019274-01、R01EB009689およびRC2 DE020771-02、MTL博士ヒョンに小児再生医療のためのオーク財団とHagey研究所の国立研究所によってサポートされています。

資料

NameCompanyCatalog NumberComments
試薬の名称: 会社 カタログ番号 コメント(オプション)
収穫を脂肪吸引
PBS ギブコ 10010-023
ハンクス液 Cellgro 21から023-CV
コラゲナーゼシグマ C6885-500mgの
セルストレーナーは100μm BDファルコン 352360
0.22μmのフィルター絆創膏トップ500ミリリットルミリポア SCGPT05RE
頭蓋冠の欠陥
Z500ブラシレスMicromotorsUM50C 日本精工 NSKZ500
円形のナイフ4.0ミリメートル Xemax外科 CK40

参考文献

  1. Levi, B., James, A. W., Nelson, E. R. Human adipose-derived stromal cells heal critical size mouse calvarial defect. PLoS One. 5, (2010).
  2. Zuk, P. A., Zhu, M., Ashjia, P. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13, 4279-4295 (2002).
  3. Keefe, M. S., Keefe, M. A. An evaluation of the effectiveness of different techniques for intraoperative antibiotics into alloplastic implants for use in facial reconstruction. Arch Facial Plastic Surg. 11, 246-251 (2009).
  4. Mitchell, J. B., McIntosh, K., Zvonic, S. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 24, 376-385 (2006).
  5. Dominici, M., Blanc, K. L. e., Mueller, I. Minimal criteria for defining multipotent mesenchymal stroma cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315-317 (2006).
  6. Cowan, C. M., Shi, Y. Y., Aalami, O. O. Adipose-derived adult stromal cells heal critical-size calvarial defects. Nat Biotechnol. 22, 560-567 (2004).
  7. Levi, B., Nelson, E. R., Li, S. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells. 29, 1241-1255 (2011).
  8. Phipps, M. C., Clem, W. C., Catledge, S. A. Mesenchymal stem cells responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One. 6, (2011).
  9. Yuan, H., Zang, Z., Li, Y. Osteoinduction by calcium phosphate biomaterials. J. Mater. Sci. Mater. Med. 9, 723-726 (1998).
  10. Wei, G., Jun, Q., Giannobile, W. V. The enchancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 28, 2087-2096 (2007).
  11. Li, C., Verpari, C., Jin, H. J. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 27, 3115-3124 (2006).
  12. Zhang, Y., Fan, W., Nothdurft, L. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C Methods. 17, 789-797 (2011).
  13. Levi, B., Hyun, J. S., Nelson, E. R. Non-integrating knockdown and customized scaffold design enhances human-adipose-derived stem cells in skeletal repair. Stem Cells. 29, 21028-21029 (2011).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

68

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved