JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

我々は、 その場での中性子粉末回折(NPD) 用いて、電極材料の検査のための電気化学セルの設計および構築を記載する。私たちは、簡単にその場での NPDセル設計内の代替についてコメントし、この細胞を用いて生産現場での NPDデータ対応した分析のための方法を議論する。

要約

リチウムイオン電池は、携帯用電子機器に使用されており、電気自動車などの高エネルギー用途のための有望な候補として考えられている。1,2しかし、そのようなエネルギー密度、電池寿命など多くの課題が、この特定の前に克服しなければならない電池技術は、広くそのような用途で実施することができる。3この研究は困難である、と我々は、電池内の電気化学サイクルを受けて、電極の結晶構造(充電/放電)をプローブするためにその場での NPD 使用して、これらの課題に対処する方法を概説する。 NPDのデータは、電極特性の範囲を担当する根本的な構造のメカニズムを決定するのに役立ち、そしてこの情報は、より良い電極および電池の開発を指示することができます。

バッテリーはカスタムメイドNPD実験やディテール我々が持っている「ロールオーバー」のセルを構築する方法のためにデザインの私たちは、簡単に6つのタイプを確認首尾オーストラリア原子力科学技術機構(ANSTO)で高強度のNPD楽器、ウォンバット、上で使用される。セル構造のために使用される設計上の考慮事項および材料はその場での NPD実験と初期方向実際の側面に関連して説明されたその場でのデータそのようなコンプレックスを分析する方法で表示されている。

概要

充電式リチウムイオン電池は、現代の電子機器のための携帯用エネルギーを供給し、電気自動車のように大規模な再生可能エネルギー生成のためのエネルギー貯蔵装置のような高エネルギー用途において重要である。3-7は、多くの課題が充電式の普及を実現するために残っているエネルギー密度及び安全性を含む、車両、大規模ストレージの電池。運転中に、原子や分子スケールのバッテリー機能を調べるために、その場法での使用は、実験で得られた情報は、可能な故障メカニズムを識別することにより、例えば、既存の電池材料を改善する方法を指示することができるように、ますます一般的になって8-10と明らかにすることによってされている材料の次の世代と考えられる結晶構造11

その場での NPD の主な目的は、電池内部の部品の結晶構造の進化を探ることです充電/放電の関数として示す。結晶学的に秩序電極上のそのような研究の焦点を合わせる構成要素は、結晶性である必要があり、結晶構造の進化を測定するためである。これは、電荷キャリア(リチウム)/挿入を抽出し、そのような変更はNPDが続いているされている電極である。 その場では 、NPDは、電極のだけでなく、反応機構と格子定数の進化を"追跡"する可能性を提供するだけでなく、挿入/電極からリチウムを抽出する。本質的にリチウムイオン電池における電荷キャリアに従うことができる。これは、バッテリ機能のリチウム中心のビューを提供し、最近少数の研究で実証されている。11-13

NPDは、リチウム含有物質及びリチウムイオン電池を検査するための理想的な技術である。 NPDは、中性子ビームと試料との相互作用に依存しているためである。 X線粉末回折(XRD)、相互作用とは異なりX線放射の試料の大部分は電子であり、従って、原子番号に比例して変化、NPDに相互作用は原子番号を有するより複雑な見かけ上ランダムな変化をもたらす中性子核相互作用によって媒介される。したがって、 その場で NPDは、そのような重元素の存在下でのリチウム原子に向かってNPDの感度などの要因にリチウムイオン電池材料の研究に特に有望であり、バッテリー中性子の非破壊的相互作用、および高商業用機器に使用されるサイズの全体バッテリー内の電池の構成要素のバルク結晶構造の検査を可能にする中性子の浸透深さ。したがって、 その場で NPD、これらの利点の結果として、リチウムイオン電池の研究のために特に有用である。これにもかかわらず、バッテリー研究コミュニティによるその場 NPDの実験の取り込みはわずか25出版罪を占め、限られていたCE限られた取り込みがそのような電解質溶液と分離器で水素を大量にインコヒーレントな中性子散乱断面積を考慮に入れる必要性など、いくつかの主要な実験的なハードル、に起因している1998年14において、電池研究のためその場での NPD 使用しての最初の報告NPD信号に有害な電池である。これはしばしば、重水素(2 H)電解質溶液と置き換え、代替の無水素または乏しい物質セパレータに置き換えることによって克服される。15別のハードルは、中性子ビームに十分なサンプルを持っている必要があることで、多くの場合の使用を必要とする要件を今度は電池に適用することができる最大充電/放電速度を制限し、より厚い電極。 例えば 、時間と角度分解能-より実際的な懸念は比較的小さいX線回折計と比較して、世界中の中性子回折計の数、およびそれらの機能である。新しい中性子diffractomeなどTERSがオンラインになりましたし、 その場での NPD実験 、克服する上述のハードルの数は成長している。

商用またはカスタム構築された細胞のいずれかを使用して、 その場での NPD実験実施する2つのオプションがあります。商業細胞は、電極中のリチウム含有量および分布の進化を含む構造情報を明らかにすることが実証されている。8-11,16-20しかし、商業細胞を使用して、既に市販されているものを研究することができる電極の数を制限し、ここでメーカーや研究施設を選択するには、まだ、未商品化の材料と商用タイプの細胞を産生するために従事している。商業型細胞の製造は、典型的にはキログラムのオーダーと著しく、細胞産生に対する障壁とすることができる電池の研究において使用される、より高いセル製造のための電極材料の十分な量の利用可能性に依存する。商用細胞TYpically充電/放電中に進化し、両電極の進化は、得られる回折パターンでキャプチャされる2つの電極を備えています。中性子ビームは高度に貫通され、単一のリチウムイオン電池( 例えば 18650セルの全体積)を貫通することができるためである。 2つの電極の進化は、複雑なデータ分析を行うことができるが、両方の電極の十分なブラッグ反射が認められた場合、これらは、全粉末パターン法を用いてモデル化することができる。それにもかかわらず、カスタムメイドの半電池は、一方の電極がリチウムであり、構造的に充電/放電中に変化するので(または他の)内部標準として働くべきでない構成することができる。これは、データ分析を単純化構造変化を示さなければならない一つの電極だけを残す。ケアはまた、関心のある全ての電極の反射が細胞内の構造変化を受けて、他のコンポーネントからの反射と重複していないことを保証するために注意する必要があります。広告カスタムメイドのセルの有利コンポーネントは、回折パターンにおける反射位置を変更するために交換することができるということである。さらに、カスタムメイドの細胞は研究者に、原則として、信号対雑音比を改善し、より小さなスケールの研究バッチで行われ、それによって材料の種類が多くなり、 その場で NPDの調査を可能にしている物質を調査するためのオプションを可能にする。

今日までその場での NPD試験において 6種類の電気化学セルの設計がなされている三円筒形のデザイン、14,15,21,22 2コイン型セル設計23~26パウチ電池設計を含め、報告されている。12,27第一の円筒形セル設計が使用される電極材料を大量に起因する速度/放電非常に低い充電に使用が制限された。14,21ロールオーバーデザインで、15は、以下に詳細に記載され、元の円筒形電池のバージョンを変更し、22の多くを克服しているtの関連する問題彼は最初の円筒形デザイン、確実にそれらの電気化学的に電極材料の構造を相関させるために使用することができる。 その場での NPD イン用コイン型セル設計は、建設、適用可能な充電率、およびコストの面で微妙な違いをフィーチャーしつつ、電極材料の類似の量は、ロールオーバーセルへの相対的なプロービングすることができます。特に、15を 、コイン型電池型が最近NPDパターンにシグナルを発生しないケーシング材料(ヌル行列)のTi-Zn合金を用いて構築されていることが報告された。26これは、後述するロールオーバー設計におけるバナジウム缶の使用に類似している。適用可能な充電/放電速度(及び偏光)の影響を及ぼし得る重要な要素は、典型的には、より厚い電極は低電流の適用を必要とする電極の厚さ、である。現在、より一般的になっているセルの設計は、並列に接続された複数の個々の細胞のシートまたはシートとポーチ細胞であるロールオーバまたはコイン型よりも高い充電/放電率で機能することができる携帯電子機器に見られるリチウムイオン電池の構造と同様に巻かれているの。これは、セル12,27が矩形である(パウチ)細胞。本研究では、セル構成、使用、およびセルを使用して、いくつかの結果を示す、「ロールオーバー」セル設計に焦点を当てる。

ロールオーバーデザイン電池用電極の製造は、従来のコイン型電池用電極の製造に実質的に類似している。電極は、最大の違いは、電極は、35×120〜150ミリメートルよりも大きな寸法をスパンする必要があるとされて、ドクターブレード法により集電体上にキャストすることができる。これは、すべての電極材料でコートを均一にすることは難しいことができます。集電体に集電体、セパレータ、及びリチウム金属箔上に電極層が配置圧延し、バナジウム缶内に挿入される。電解質を使用するdはLiPF 6を 、重水素化されたエチレンカーボネートと重水素化ジメチルカーボネートとリチウムイオン電池の中で最も一般的に使用される塩の一つである。このセルは、4つの報告された研究において成功裏に使用されており、以下でより詳細に説明する。15,28-30

プロトコル

1.細胞成分は、建設前に必要

NOTE:バナジウムは、従来NPD実験のために使用されることができ、一方の端部が封止され、他端に開放されている完全バナジウム管である。バナジウムからNPDデータには信号が事実上存在しない。

  1. バナジウム缶の容積に一致する寸法にリチウム金属箔の部分をカット。例えば、直径9mmバナジウム缶用ピース約120×35 mmの切断。また、125ミクロン未満の厚さを引き裂くことなく、取り扱いが困難であり得ることを指摘し、中性子吸収を最小限に抑えるために、より薄いリチウム箔を使用する。
  2. 事前選択セパレータのタイプが使用される。寸法は電極よりもわずかに大きくなるように、セパレータのシート、 例えば 140×40 mmのカット。
    注:多孔質ポリビニルフルオライド(PVDF)膜は、容易に電解液を吸い上げるが、それは高価であり、中に慎重に取り扱われない場合には容易に損傷し、引き裂かすることができます建設。また、市販のポリエチレン系シートは、容易に、一般により大きな水素含有量、信号対雑音を低減させるように、しかしながら、それらは、電解質を吸収しない、より堅牢である。
  3. すなわち31。Marks が定めたガイドラインに従うことによって正極を行い、選択された比率で、PVDF、カーボンブラック、活物質を兼ね備えています。カーボン:一般的に、PVDFの10:10:80の比率使い活物質を、しかし、調査中の材料に応じてこれを調整してください。その後一晩攪拌、混合物を粉砕し、スラリーが形成されるまでのn -メチルピロリドン(NMP)を滴下して追加します。
  4. ドクターブレード法を用いて、アルミニウム箔(20μmの厚さ)の上に混合物を広げた。
    1. 表面上に数滴のエタノールを塗布し、表面に集電体を配置することにより、寸法の滑らかな表面の200×70ミリメートル( 例えば 、ガラス)の集電体シートを接着する。代わりに、私たち滑らかな表面から集電体にわずかな真空を引くことができ、機器を電子。スラリーを塗布する前に全くシワや折り目がないことを確認するために、集電体を滑らかに。
    2. 集電体の一方の端に歯またはスラリーの広い半円形の水たまりを置きます。ノッチバー、ローラーまたは特別に設計されたコーターの使用(集電体上であらかじめ定義された高さのノッチバーを、 例えば 、100または200ミクロン、典 ​​型的に使用されている)の集電体全体に選択したデバイスをスライドさせて、集電体上にスラリーを広めるスラリーを、集電体表面上にスラリーの広がりをもたらす。
    3. 静かに滑らかな表面から集電体を除去して、集電体を配置し、乾燥のために真空オーブン内にスラリーを広げる。
      NOTE:拡散技術はMarks に詳細に記載されている31
  5. 正極prepaをカット寸法はリチウム箔と一致していることをこのような工程1.3に赤い。コー​​ティングされていない金属集一端の長さが約0.5cmの「タブ」があることを確認してください。電池性能を向上させるために、平板プレスを用いて集電体に乾燥した正極フィルムを押す。
    注: 図1は、セパレータと正極の成分の相対的なサイズを示している。電極活物質の最小量が300mgの、しかし、より大きな量(他の電池構成要素と比較して)より良いNPD信号である。大きな信号は、より詳細な情報は、NPDのデータとより良い時間分解能から抽出することを可能にし得る。
  6. 重水素化されたエチレンカーボネートと重水素化ジメチルカーボネートの1/1体積%の混合物中の1Mのリチウムヘキサフルオロホスフェートを事前に準備する。すべてのLiPF 6を溶解し、電解質が十分に使用前に混合されていることを確認します。
  7. トンの集電体の部分をカット彼はステップ1.5の正極と同じ寸法と集電体および正極を量る。電極混合物の質量を得るために、これらの質量を差し引く。活物質の質量を与えるために0.8、電極混合物の質量を掛ける。

2.セル構造

  1. アルゴングローブボックス内部に満たされたセルを組み立てる前に、プラスチックトレイやgloxeboxのベースにいくつかの他の非金属カバーのどちらかを下に置く。
  2. セパレータの長いストリップ、上に向けてスラリーと正極とアルミ棒(または銅線)、一端に "タブ"で傷、セパレータの第2のストリップ、そして最終的にリチウムを次の順序で個々のコンポーネントを積み重ねる銅線を有する金属は、リチウム金属(アルミニウム棒と同じ側)の端部に巻き取られる。
  3. 2つの電極が接しないようにすること、アルミニウム棒と銅線との端から層を圧延開始接触。
  4. ポリエチレン系シートがセパレータとして選択した場合、時折リチウム金属スタックの全長に沿って正極の間にセパレータに電解液を数滴加える。代わりに、圧延工程の間に徐々に滴を追加します。 PVDF膜をセパレータとして用いた場合は、このステップは不要である。
  5. 電極がきつく巻かれていることを、層を揃えたままであることを確実にするために注意してください。
    注:層は、圧延プロセスが再起動する必要がありずれるとなった場合は、電解質溶液を添加する必要があるかもしれない揮発性の高い、よりであるように、しかし、注意が払わなければならない。
  6. セパレータの長い作品は完全に( すなわち電極は、バナジウムのハウジングに手を触れないでください)スタックまたは電極が露出されないようにロールに巻き付くことを確認してください。
  7. バナジウムに丸めスタックを挿入することができ、銅線とアルミ棒は2〜3センチメートルを越えて突出するようにバナジウム缶のトップ。 、合計で1.5ミリリットルを使用することができバナジウムの上部に残っている電解質を滴下して追加します。
  8. バナジウム缶の上部にアルミニウム棒と銅線のために両側で切断ノッチにゴム栓を追加する。缶の上に銅線のプラスチックシースの端部の周りに歯科用ワックスを溶融して缶を密封する。 図2に示すように、最終的なセルが表示されていることを確認してください。
  9. セルを水平に12〜24時間のための「年齢」または「ウェット」することができます。使用前に、マルチメータの端子にアルミニウム棒と銅線を接続して構成されたセルの電位を測定することにより、開回路電位をテストする。また、目視で漏れがないことを確認してください。

結果

私たちは李0.18のSr 0.66 Tiを0.5のNb 0.5 O 3の電極との例を提示し、ここで文献15,28-30で、このロールオーバーセルを使用して汎用性を実証してきた。32

シーケンシャルリートベルト解析(充電状態の関数として、リートベルト精密化)、第1のデータセットへの多相モデルの単一の精密化を試みるに先立ち、前の現在の?...

ディスカッション

設計、 および in situ実験実行する場合のいずれかで、「ロールオーバー」中性子回折細胞または他の設計、慎重に成功した実験を確実にするために制御されなければならない多数の態様がある。これらには、注意深い細胞成分の種類と量の選択、調製、電極および最終構築セルが高品質であることを確認して、適切な回折条件を選択することは、事前に実行される電気化学的?...

開示事項

The authors have nothing to disclose.

謝辞

We thank AINSE Ltd for providing support through the research fellowship and postgraduate award scheme.

資料

NameCompanyCatalog NumberComments
Slurry Preparation
PVDFMTI CorporationEQ-Lib-PVDFhttp://www.mtixtl.com/PVDFbinderforLi-ionbatteryelectrodes80g/bag-EQ-Lib-PVDF.aspx
Active Electrode MaterialResearcher makes*This is dependent on the electrode under investigation, typically made in-house by the researcher and varies every time
Carbon blackMTI CorporationEQ-Lib-SuperC65http://www.mtixtl.com/TimicalSUPERC65forLithium-IonBatteries80g/bag-EQ-Lib-SuperC65.aspx
NMPMTI CorporationEQ-Lib-NMPhttp://www.mtixtl.com/N-Methyl-2-pyrrolidoneNMPsolventforPVDF
250g/bottleLib-NMP.aspx
Magnetic stirrerIKAC-MAG HS 7 IKAMAGhttp://www.ika.in/owa/ika/catalog.product_detail?iProduct=3581200
Electrode Fabrication
Doctor blade (notch bar)DPM Solutions Inc.100, 200, 300 & 400 micron  4-Sided Notch Bar
Al or Cu current collectorsMTI CorporationEQ-bcaf-15u-280http://www.mtixtl.com/AluminumFoilforBatteryCathodeSub
strate-EQ-bcaf-15u-280.aspx
Vacuum OvenBindere.g. VD 53http://www.binder-world.com/en/vacuum-drying-oven/vd-series/vd-53/
Flat-plate pressMTI CorporationEQ-HP-88V-LDhttp://www.mtixtl.com/25THydraulicFlat
HotPress-EQ-HP-88V.aspx
Roll-over cell construction
V can
electrode on Al/CuMTI CorporationEQ-bcaf-15u-280http://www.mtixtl.com/AluminumFoilforBatteryCathodeSub
strate-EQ-bcaf-15u-280.aspx
polyethylene-based or PVDF membraneMTI CorporationEQ-bsf-0025-400Chttp://www.mtixtl.com/separatorfilm-EQ-bsf-0025-400C.aspx
LiPF6Sigma-Aldrich450227http://www.sigmaaldrich.com/catalog/product/aldrich/450227?lang=en&region=AU
deuterated dimethyl carbonateCambridge IsotopesDLM-3903-PK http://shop.isotope.com/productdetails.aspx?id=10032379&itemno=DLM-3903-PK
deuterated ethylene carboanteCDN IsotopesD-5489https://www.cdnisotopes.com/as/products/specifications/D-5489.php?ei=YWVraWmjoJ1i0lZ7nkr0RpwHr
Hxc9ornu14O4WUtZKbZWZrcq6j55
G0lOab3Wi0dMZ7xc+0Yse1leWVtZ
LnrGKvta7v591o4JrnkbRowHt/r
Li metal foilMTI CorporationLib-LiF-30Mhttp://www.mtixtl.com/Li-Foil-30,000 ml-35 mmW-0.17 mm
Th.aspx
Rubber stopper cut to sizegeneric erasercut a generic eraser to size
dental waxAinsworth DentalAIW042http://www.ainsworthdental.com.au/catalogue/Ainsworth-Modelling-Wax-500g.html
Copper wire (insulated)genericsheathed Cu wire that can be cut to size
Aluminum rod (<2 mm diameter)genericcut to size as required
GloveboxMbraunUNILabhttp://www.mbraun.com/products/glovebox-workstations/unilab-glovebox/
Scissors generic
Soldering irongeneric
In situ NPD
Appropriate neutron diffractometerANSTOWombathttp://www.ansto.gov.au/ResearchHub/Bragg/Facilities/Instruments/Wombat/
Potentiostat/galvanostatAutolabPGSTAT302Nhttp://www.ecochemie.nl/Products/Echem/NSeriesFolder/PGSTAT302N
Connections to battery from potentiostat/galvanostatgeneric
Training of NPD instrument and use
Data analysis
Data visualisation and peak fitting, .e.g. LAMP suiteILLLAMPhttp://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/lamp/
Rietveld analysis software, e.g. GSASAPSGSAShttps://subversion.xray.aps.anl.gov/trac/EXPGUI

参考文献

  1. Winter, M., Besenhard, J. O., Spahr, M. E., Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. (Weinheim, Ger.). 10, 725-763 (1998).
  2. Wakihara, M. Recent developments in lithium ion batteries). Mater. Sci. Eng., R. 33, 109-134 (2001).
  3. Goodenough, J. B., Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 22, 587-603 (2010).
  4. Palomares, V., et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884-5901 (2012).
  5. Masquelier, C., Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. (Washington, DC, U. S.). 113, 6552-6591 (2013).
  6. Reddy, M. V., Subba Rao, G. V., Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. (Washington, DC, U. S.). 113, 5364-5457 (2013).
  7. Goodenough, J. B., Kim, Y. Challenges for rechargeable batteries. J. Power Sources. 196, 6688-6694 (2011).
  8. Sharma, N., Peterson, V. K. Overcharging a lithium-ion battery: Effect on the LixC6 negative electrode determined by in situ neutron diffraction. J. Power Sources. 244, 695-701 (2013).
  9. Sharma, N., et al. Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in situ neutron diffraction study. J. Power Sources. 195, 8258-8266 (2010).
  10. Senyshyn, A., Muehlbauer, M. J., Nikolowski, K., Pirling, T., Ehrenberg, H. In-operando' neutron scattering studies on Li-ion batteries. J. Power Sources. 203, 126-129 (2012).
  11. Sharma, N., Yu, D., Zhu, Y., Wu, Y., Peterson, V. K. Non-equilibrium Structural Evolution of the Lithium-Rich Li1+yMn2O4 Cathode within a Battery. Chemistry of Materials. 25, 754-760 (2013).
  12. Pang, W. K., Sharma, N., Peterson, V. K., Shiu, J. J., Wu, S. H. In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O4 parallel to Li4Ti5O12 full cell. Journal of Power Sources. 246, 464-472 (2014).
  13. Pang, W. K., Peterson, V. K., Sharma, N., Shiu, J. -. J., Wu, S. -. h. . Lithium Migration in Li4Ti5O12 Studied Using in Situ Neutron Powder. 26, 2318-2326 (2014).
  14. Bergstom, O., Andersson, A. M., Edstrom, K., Gustafsson, T. A neutron diffraction cell for studying lithium-insertion processes in electrode materials. J. Appl. Crystallogr. 31, 823-825 (1998).
  15. Sharma, N., Du, G. D., Studer, A. J., Guo, Z. P., Peterson, V. K. In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery. Solid State Ion. 199, 37-43 (2011).
  16. Sharma, N., Peterson, V. K. Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction. Electrochim. Acta. 101, 79-85 (2013).
  17. Dolotko, O., Senyshyn, A., Muhlbauer, M. J., Nikolowski, K., Ehrenberg, H. Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. Journal of Power Sources. 255, 197-203 (2014).
  18. Rodriguez, M. A., Ingersoll, D., Vogel, S. C., Williams, D. J. Simultaneous In Situ Neutron Diffraction Studies of the Anode and Cathode in a Lithium-Ion Cell. Electrochem. Solid-State Lett. 7, (2004).
  19. Wang, X. -. L., et al. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction. Sci. Rep. 2, 00747 (2012).
  20. Rodriguez, M. A., Van Benthem, M. H., Ingersoll, D., Vogel, S. C., Reiche, H. M. In situ analysis of LiFePO4 batteries: Signal extraction by multivariate analysis. Powder Diffr. 25, 143-148 (2010).
  21. Berg, H., Rundlov, H., Thomas, J. O. The LiMn2O4 to lambda-MnO2 phase transition studied by in situ neutron diffraction. Solid State Ion. 144, 65-69 (2001).
  22. Roberts, M., et al. Design of a new lithium ion battery test cell for in-situ neutron diffraction measurements. Journal of Power Sources. 226, 249-255 (2013).
  23. Rosciano, F., Holzapfel, M., Scheifele, W., Novak, P. A novel electrochemical cell for in situ neutron diffraction studies of electrode materials for lithium-ion batteries. J. Appl. Crystallogr. 41, 690-694 (2008).
  24. Godbole, V. A., et al. Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries. RSC Adv. 3, 757-763 (2013).
  25. Colin, J. -. F., Godbole, V., Novak, P. In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochem. Commun. 12, 804-807 (2010).
  26. Bianchini, M., et al. A New Null Matrix Electrochemical Cell for Rietveld Refinements of In-Situ or Operando Neutron Powder Diffraction Data. Journal of the Electrochemical Society. 160, 2176-2183 (2013).
  27. Liu, H. D., Fell, C. R., An, K., Cai, L., Meng, Y. S. In-situ neutron diffraction study. Journal of Power Sources of the xLi(2)MnO(3)center dot(1-x)LiMO2 (x=0, 0.5; M. 240 (2), 772-778 (2013).
  28. Sharma, N., et al. Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO4). J. Am. Chem. Soc. 134, 7867-7873 (2012).
  29. Sharma, N., et al. Time-Dependent in-Situ Neutron Diffraction Investigation of a Li(Co0.16Mn1.84)O4 Cathode. J. Phys. Chem. C. 115, 21473-21480 (2011).
  30. Du, G., et al. Br-Doped Li4Ti5O12 and Composite TiO2 Anodes for Li-ion Batteries: Synchrotron X-Ray and in situ Neutron Diffraction Studies. Adv. Funct. Mater. 21, 3990-3997 (2011).
  31. Marks, T., Trussler, S., Smith, A. J., Xiong, D., Dahn, J. R. A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. J. Electrochem. Soc. 158, 51-57 (2010).
  32. Brant, W. R., et al. Rapid Lithium Insertion and Location of Mobile Lithium in the Defect Perovskite Li0.18Sr0.66Ti0.5Nb0.5O3. ChemPhysChem. 13, 2293-2296 (2012).
  33. Richard, D., Ferrand, M., Kearley, G. J. Analysis and Visualisation of Neutron-Scattering Data. J. Neutron Research. 4, 33-39 (1996).
  34. Brant, W. R., Schmid, S., Du, G., Gu, Q., Sharma, N. A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction. Journal of Power Sources. 244, 109-114 (2013).
  35. Hu, C. -. W., et al. Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction. J. Power Sources. 244, 158-163 (2013).
  36. Cai, L., An, K., Feng, Z., Liang, C., Harris, S. J. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction. J. Power Sources. 236, 163-168 (2013).
  37. Doeff, M. M., et al. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques. J. Visualized Exp. , 50591-50594 (2013).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

93 operando

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved