Method Article
広筋のヘイケボタルの生検、精製されたミトコンドリアの準備、および呼吸計測プロファイリングのための方法が記載されている。小さな筋肉量の使用は、臨床研究用途のためにこの技術に適しています。
単離されたミトコンドリアの呼吸計測プロファイリングは、一般に電子伝達鎖の機能を調べるために使用される。我々は、細胞外フラックス(XF)アナライザを使用して、人間の広さヘイケボタルのサンプルを取得する骨格筋組織の最小量からミトコンドリアを単離するための方法、およびプレートベースの呼吸計測プロファイリングを記載する。ミトコンドリアの1.0、2.5および5.0μgのを使用して得られた呼吸プロファイルの比較は、1.0μgの呼吸を測定するのに十分であると5.0μgの標準誤差の比較に基づいて、最も一貫性のある結果を提供することをことを示している。ミトコンドリアマーカーCOX IVおよび非ミトコンドリアの組織マーカーのGAPDHのための単離されたミトコンドリアのウェスタンブロット分析は、このプロトコルを使用して制限された非ミトコンドリアの汚染が存在することを示している。筋肉組織のわずか20 mgのミトコンドリア呼吸計測を研究する能力は、ユーザが、臨床試験で複数のエンドポイントの個々の生検を利用することを可能にする研究プロジェクト。
ミトコンドリアは、細胞内の一次エネルギー生産拠点であり、高齢化に重要な役割だけでなく、心血管疾患、アルツハイマー病、糖尿病、癌、および肥満などの様々な加齢関連疾患を有している。単離されたミトコンドリアの呼吸計測プロファイリングは、電子伝達鎖(ETC)関数の直接分析を提供し、ミトコンドリアの生物学と健康と病気におけるその役割の理解に大きく貢献してきました。単離されたミトコンドリアは、本稿に記載された方法は、ヒト被験体から得られた骨格筋組織生検から単離したミトコンドリアの呼吸計測分析を可能にするために最適化された基板等の輸送、ATPシンターゼ活性、プロトンリークのような生体エネルギー論の様々な側面を研究するために使用される。この原稿に記載されて生検プロトコルは過去12年間、私たちのスタッフが利用されている。当社グループは、様々な年齢の大人に700以上の手順を実行しました90歳までの、および任意の有害な安全性の問題のないさまざまな慢性疾患条件に。このプロトコルの重要な側面は、それが具体的に、それによって臨床調査研究での使用を容易にする、組織の最小量を利用するように設計されていることである。
様々なプロトコルは、ミトコンドリアを単離するために開発されてきた。フェルナンデス- Vizarra ら 1,2は、様々なラット組織ならびに培養細胞からミトコンドリアを単離するための方法を記載した。ガルシア·Cazarin ら 3は、ラットやマウスからの骨格筋からのミトコンドリアを単離する方法を報告している。ラット脳からミトコンドリアを単離するための方法は、イグレシアス、ゴンザレスら 4グロスらによって報告されている。 図5は barocyclerおよび/ またはPCTシュレッダーを使用してミトコンドリアを単離する方法を報告した。最近、フランコら 6抗を使用して、高度に濃縮されたミトコンドリアを単離する方法が報告され-TOM22磁気ビーズ。
これらのプロトコルは、優れた結果をもたらす一方で、組織のサイズ要件は、この原稿に記載された方法に比べて高い。例えば、Gross ら 5は、腓腹筋の1.5〜1.8グラム、および腎臓組織の約2gを使用した。同様に、フランコら 6は、500 mgのマウス肝臓組織を使用する。私たちの経験から、骨格筋の経皮針生検から期待される典型的な収量は、( 外側広はヘイケボタル )100〜200 mgの範囲である。ここに記載されたプロトコルを使用して筋肉組織の20〜50 mgのミトコンドリア機能を評価する能力は、生検ごとに複数の評価を実行し、他の分子生物学実験において将来使用するためにサンプルを格納するようにユーザーに許可する。これは臨床研究とサンプルの勤勉な使用を必要とする他の研究で重要な機能です。これは、以前に凍結さミトコンドリアが原因OUTEに結合された呼吸を研究するための良いではないことに留意すべきであるミトコンドリア膜損傷およびチトクロームCの活性の損失をrは。提案手法では、適応とチャペルとペリー7によって発表された方法から変更されている。
この原稿に記載された方法を使用して、我々は最近、ヒト広筋から単離されたミトコンドリアの呼吸計測プロファイルが直接歩行速度8として測定身体能力、と相関するヘイケボタルことを報告している。
注:医学のウェイクフォレストの学校の治験審査委員会によって承認された記載されたプロトコル。インフォームドコンセントを書面で得られた。すべての参加者は23から35までの範囲のBMIで、男女の健全な高齢者(65-79歳)であった。
1.骨格筋生検
2.ミトコンドリアの単離
3.洗濯ミトコンドリア
4.見積もりBCAタンパク質アッセイキットを使用してタンパク質濃度を測定することによるミトコンドリアコンテンツ
注:呼吸計測測定のために、またはウェスタンブロット実験のために24ウェルマイクロプレート上にロードするために使用されるミトコンドリアの量を計算するためにこの濃度を使用してください。タンパク質濃度の計算のために考慮に希釈係数(10)を取る。ロジャース、GW らによって記載されているように5 XFアッセイを行う。12
NOTE:ピコモルO 2 /分でO 2消費率(OCR)を可視化するか、データ出力中のO 2およびpHの絶対レベル。
6.ウエスタンブロット
注:最終サンプル中のミトコンドリアの濃縮を確実にするためにウェスタンブロッティングによってミトコンドリアのマーカーCOX IVおよび全組織GAPDHを決定
図1は、全体のプロトコルの詳細なフローチャートを示している。
COX IV / GAPDH( 図2)のウェスタンブロットプロファイルは、ミトコンドリアタンパク質、COX IV、及び非ミトコンドリアマーカー、GAPDHの発現を示す。 COX IVおよびGAPDHの両方の発現は、全体の筋肉溶解物において明らかである。ミトコンドリアは、このプロトコルに記載された技術を用いて単離された後、GAPDHは、同じ露出で休んでいる間に、COX IVバンドは依然として明らかである。長い曝露は、かすかなGAPDHバンドを公開してもよい。これらのブロットは、単離されたミトコンドリアは、最小限の非ミトコンドリアの汚染を持っていることを示している。さらに、単離されたミトコンドリアにおけるCOX IV発現は、サンプル間の一貫性があります。
図3は 1.0μgの、2.5μgの、及びミトコンドリアの5.0μgのを使用して、複合体II(コハク酸およびロテノン)で駆動される典型的な呼吸計測プロファイルを示す。予想されるように、全体的なOCRはワット増加するi番目のミトコンドリアの高い量。このアッセイのために計算された呼吸調節比(RCR)は、ミトコンドリア調製物が高品質であることを示す、7.95。さらに、状態3uのOCRは、ミトコンドリアの品質を確認し、状態3のそれよりもわずかに高い。
ミトコンドリアの異なる量をプロファイルするとき、結果の一貫性を比較するために、我々は、ANOVA(分散分析)を行い、1.0μgの、2.5μgのを使用して分散の実際の値と二乗和(SS)を計算し、ミトコンドリアの5.0μgのあたりにロードよく( 図4)。 SSは、状態2、状態3、状態3uに、アンチマイシンA、およびRCRのために提示されている。状態2と状態3の測定のために、一方向ANOVAを(それぞれp <0.01およびp <0.05)、統計的に有意であった。同様に、一方向ANOVAをマイシン及びRCRた(p <0.01およびp <0.0001ための統計的に有意であった、それぞれ有意差は群間状態3uに見られなかった。のThESEの結果は、ウェルあたりのミトコンドリアの5.0μgの他の濃度に比べて最低のSSを与え、参加者の私達の人口はXF 24システムで使用する最適な量であることを示している。
図5は、ミトコンドリアタンパク質が初期筋標本の大きさに基づいて予測することができる量を示すためのガイドとして機能する。予想されるように処理された筋肉量(mg)の量は、最終試料の総ミトコンドリアのタンパク質含有量(mg)との間には強い相関がある。
チャペル·ペリーバッファI(CPI) | |
化学物質 | 濃度 |
塩化カリウム | 100 mMの |
MOPS | 50 mMの |
EDTA | 1 mMの |
MgSO 4を | 5 mMの |
ATP | 1 mMの |
pHは | 7.4 |
チャペル·ペリーバッファーII(CPII) | |
化学物質 | 濃度 |
塩化カリウム | 100 mMの |
MOPS | 50 mMの |
EDTA | 1 mMの |
MgSO 4を | 5 mMの |
ATP | 0.2 mMの |
脂肪酸フリーのBSA | 0.50% |
pHは | 7.4 |
ミトコンドリアアッセイソリューション(MAS)(2X) | |
化学物質 | 濃度 |
蔗糖 | 35 mMの |
マンニトール | 110 mMの |
KH 2 PO 4 | 2.5 mMの |
のMgCl 2 | 2.5 mMの |
HEPES | 1.0 mMの |
EGTA | 0.5 mMの |
脂肪酸フリーのBSA | 0.10% |
pHは | 7.4 |
複合体II初期条件とミトコンドリアアッセイソリューション(MAS) | |
化学物質 | 濃度 |
1X MAS | |
コハク酸塩 | 10 mMの |
ロテノン | 2μM |
pHは | 7.4 |
複合体I初期条件とミトコンドリアアッセイソリューション(MAS) | |
化学物質 | 濃度 |
1X MAS | |
ピルビン酸塩 | 5 mMの |
リンゴ酸塩 | 5 mMの |
pHは | 7.4 |
*すべてのバッファは、脱イオン水で作られる |
表1.液、緩衝レシピ。
プロトコルステップ | ||
StartProtocol | ||
コマンド | 時間(分) | ポート |
調整する | 0.00 | |
待って | 10.00 | |
ミックス | 1.00 | |
待って | 3.00 | |
ミックス | 1.00 | |
待って | 3.00 | |
ミックス | 0.50 | |
メジャー | 3.00 | |
ミックス | 1.00 | |
メジャー | 3.00 | |
ミックス | 0.50 | |
注入する | A | |
ミックス | 1.00 | |
メジャー | 6.00 | |
ミックス | 1.00 | |
注入する | B | |
ミックス | 1.00 | |
メジャー | 3.00 | |
ミックス | 1.00 | |
注入する | ℃ | |
ミックス | 1.00 | |
メジャー | 3.00 | |
ミックス | 1.00 | |
注入する | D | |
ミックス | 1.00 | |
メジャー | 3.00 | |
EndProtocol |
表2.ミックス、測定、および呼吸のための周期設定を混在させる。
プロトコル全体の図1のフローチャート。 この図の拡大版をご覧になるにはこちらをクリックしてください。
/ftp_upload/52350/52350fig2highres.jpg "/>
図2.全骨格筋組織、ならびに単離されたミトコンドリアのための代表的なウエスタンブロット。全組織抽出物、ならびに単離されたミトコンドリアは、非ミトコンドリアの制御のためのミトコンドリアマーカーとGAPDH抗体としてCOX IV抗体で免疫ブロットした。いいえGAPDHバンドは、非ミトコンドリアのソースからほとんど、あるいは全く汚染を示す単離されたミトコンドリアでは観察されなかった。 この図の拡大版をご覧になるにはこちらをクリックしてください。
人間広筋から単離されたミトコンドリアの図3.代表呼吸計測プロファイルがヘイケボタル 。単離されたミトコンドリアの3つの濃度を、5.0μgの、2.5μgの、及び1.0μgの我々このアッセイで使用される再。ポート注射後の化合物の最終濃度は2 mMのADP(ポートA)であった。 2μMのオリゴマイシン(ポートB); 6μMFCCP(ポートC);と(ポートD)をアンチマイシン2μM。この実行のための計算されたRCRは7.95だった。 この図の拡大版をご覧になるにはこちらをクリックしてください。
5.0μgの、2.5μgの、及び1.0μgのミトコンドリアを使用して、異なるミトコンドリア呼吸の状態とRCRのための正方形の図4.二乗の合計合計。 この図の拡大版をご覧になるにはこちらをクリックしてください。
ig5highres.jpg "/>
。筋肉の量(mg)および総ミトコンドリアタンパク質の収量(mg)を: 図5は、これは、初期の筋肉試料重量回帰分析に基づいて予測することができるミトコンドリアタンパク質の量を推定するためのガイドとして使用することができる 。予想されるように、筋肉の量および得られた総ミトコンドリアタンパク質との間の直接的な正の相関がある。
単離されたミトコンドリアは、多くの場合、基板搬送とTCAサイクルの機能を含むETC機能の役割を調べる研究、ならびに他のミトコンドリアの活動に利用される。孤立した小器官を使った呼吸アッセイは、酸化的リン酸化の基本的なプロセスや、ETCの固有の特性の直接検査を可能にする全細胞または透過処理筋線維と比較して単離されたミトコンドリアの呼吸計測プロファイリングは、比較的容易なデータ解釈の利点とミトコンドリアの質量/生合成における非ミトコンドリアのプロセスや変更からの「干渉」が存在しないことがあります。データの正規化は、それによって、サンプル間のミトコンドリアの直接的な相互比較を可能にする、ミトコンドリアのタンパク質含有量に基づいている。単離されたミトコンドリアの呼吸計測プロファイリングは、研究の目的は、メカニズムの基礎となる、そのようなETC部品などの特定の標的を同定するかを決定することである好ましい方法であるS /複合体、またはミトコンドリアの輸送メカニズム。
小さな組織試料から筋生検および機能ミトコンドリアの単離のためのプロトコルについて説明する。手がダウンスホモジナイザーを運営に対してこの方法は、自動化されたホモジナイザーの利用にユーザー間の再現性のある結果が得られます。ミトコンドリアの単離は、筋肉組織のわずか20ミリグラムで行うことができる。このサンプルサイズから得ることができる単離されたミトコンドリアの量がさらに分子分析のための他の実験と保存のための余剰ミトコンドリアを残しシーホースプレートベースの呼吸計測を実行するのに十分である。この方法は、ミトコンドリアのより小さな量が(ウェル当たり1〜2μgの)を使用することができるXF 96に変換することができることに留意されたい。
ミトコンドリアを単離するためのいくつかのプロトコルは、初期の組織破壊のためのダウンスホモジナイザーに依存している。この方法の欠点は、実践的な初期組織の性質である均質化。ホモジナイザーで乳棒の力とスピードが事業者6の間に大きく変化することができます。これは、実験間の変動、ならびに実験室対実験室変動をもたらし、実験間のデータを比較することの難しさをもたらすことができる。これは、典型的には、処置前および処置後の、潜在的に複数の部位で、参加者からのデータは別々の時点で採取されたヒトの介入研究で特に懸念される。私たちは、限られた個人対個人の変動をより再現性のある結果が得られ、より一貫性のあるアプローチのための自動化されたホモジナイザーを使用しています。製剤の速度も同時に複数のサンプルを処理するのに適したこのアプローチを行う。典型的には、最大3つの実験を1日で行うことができる。
ここに記載された技術の潜在的な制限は、孤立した小器官の使用とプレートベースのフォーマットを使用することから生じる。例えば、ピカードら 。悪魔を持っている単離されたミトコンドリアは、透過性筋線維における無傷ミトコンドリアのものとは根本的に異なる機能特性を有することがstrated。彼らは、ミトコンドリアの分離技術は、より大きな活性酸素種の生成13を伴って透過性に筋線維と比較して有意に増加したRCRとして、変更された生体エネルギー機能をもたらすことを提案した。透過処理した筋線維と比較して、ミトコンドリアの単離は、長い準備時間を必要としない。また、細胞内容物の損失は、細胞全体、さらには、透過性の繊維内に保持されているものを生理学的関連性を減少させる。記載された技術が許すとプレートベース呼吸計測の使用は、サンプルあたりランを複製する。しかし、ミトコンドリアは、各ウェルの底に接着しなければならない。この構成は、それらの通常の環境とは異なり、機能的特性に影響を及ぼし得る。また、THER、ミトコンドリアの単離のためにこのプロトコルを使用していることに留意すべきである電子は、依然として、ミトコンドリア調製物中の小胞体(ER)からの汚染であってもよい。 ER汚染の違いはミトコンドリアの収率および影響の結果の決定に影響を与え得る。
結論として、この研究は、この手順を使用して組織から単離されたミトコンドリアは、機能的に活性であり、研究/骨格筋サンプルの最小量から高品質の単離されたミトコンドリアを必要とする用途に使用できることを確認するデータを提示する。この方法の利点があることは、i)は、骨格筋の最小量からミトコンドリアを単離することが可能であり、ii)の手順は、iii)のプレートに基づく技術では、同時に複数のサンプルを実行することが可能であり、迅速であるおよびiv)試料保存および他の分子生物学的研究のために生体エネルギーアッセイ後の十分な余剰組織および単離されたミトコンドリアがある。
The author, George Rogers, is an employee of Seahorse Bioscience that produces the instrument used in this article. Open Access fees were supported by Seahorse Biosciences.
We would like to thank Dr. Marc Liesa, Boston University School of Medicine, helpful discussions; Ms. Karin Murphy, Ms. Heather Gregory, and Mr. John Stone, all from Wake Forest School of Medicine, for helpful technical assistance in the development of this protocol.
Name | Company | Catalog Number | Comments |
Equipment | |||
Homogenizer Bio-Gen PRO200 | BioExpress | ||
Eppendorf Centrifuge 5804 R | Fisher Scientific | ||
Deepwell late Rotor | Fisher Scientific | ||
6 mm University College Hospital Needle | Cadence | ||
60 cc syringe | Fisher Scientific | ||
96-well plate reader | Tecan (Genios-basic) | ||
Seahorse XF 24-3 analyzer | Seahorse Biosciences, Inc. | ||
Protein gel system | Life Technologies (Invitrogen) | ||
Kodak Gel Logic 112 | Carestream Health, Inc | ||
Kodak camera assembly | Carestream Health, Inc | ||
Consumables | |||
XF24 V7 Cell Culture Microplate and XF24 sensor cartridge | Seahorse Bioscience | 100850-001 | |
100867-100 | |||
Potassium hydroxide (KOH) | Sigma-Aldrich Co | 221473 | |
Hydrochloric acid (HCl) | Acros | 12421-0010 | |
Dulbecco's Phosphate buffered saline | Lonza | 17-512F | |
Potassium chloride (KCl) | Fisher Scientific | P333 | |
MOPS | Fisher Scientific | BP308 | |
EDTA | Fisher Scientific | BP118 | |
Magnesium sulfate (MgSO4) | Sigma-Aldrich Co | M7506 | |
ATP | Sigma-Aldrich Co | A9187 | |
Fatty acid-free BSA | Calbiochem | 126575 | |
Sucrose | Sigma-Aldrich Co | S0389 | |
Bacterial proteinase | Sigma-Aldrich Co | P-8038 | |
D-Mannitol | Sigma-Aldrich Co | M9546 | |
KH2PO4 | Fisher Scientific | P284 | |
Magnesium chloride (MgCl2) | Sigma-Aldrich Co | M9272 | |
HEPES | Sigma-Aldrich Co | H3784 | |
EGTA | Sigma-Aldrich Co | E3889 | |
BCA protein assay kit | Sigma-Aldrich Co | PI23227 | |
Succinic Acid* | Sigma-Aldrich Co | S3674 | |
Pyruvic acid* | Sigma-Aldrich Co | P5280 | |
Malic acid* | Sigma-Aldrich Co | 2288 | |
ADP(K+ salt)* | Sigma-Aldrich Co | A5285 | |
XF Cell mito stress test kit | Seahorse Biosciences | 101706 | |
Tween-20 | Santa Cruz Biotechnology, Inc. | SC-29113 | |
NuPAGE 12% Bis-Tris Gel | Life Technologies (Invitrogen) | NP0343BOX | |
Immobilin Transfer Membranes (0.45 um) | Millipore | IPVH20200 | |
MOPS SDS Running Buffer (20X)-500 ml | Life Technologies (Invitrogen) | NP0001 | |
NuPAGE Transfer Buffer (20X)-1 liter | Life Technologies (Invitrogen) | NP0006-1 | |
Primary antibodies (mAB to VDAC1/Porin) | Abcam | ab14734 | |
Primary antibodies (mAB to GAPDH) | Abcam | ab9484 | |
Anti-Mouse IgG (Goat), HRP-labeled | PerkinElmer | NEF822E001EA | |
Anti-Rabbit IgG (Goat), HRP-labeled | PerkinElmer | NEF812E001EA | |
*ADP, succinic acid, pyruvic acid, and malic acid should be adjusted to pH 7.4 with KOH only |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved