JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

Eliminating specific cells without damaging other cells is extremely difficult, especially in established tissue, yet there is an urgent need for a cell elimination method in the tissue engineering field. Here, we present a method for specific cell elimination from a mixed 3D cell culture using near infrared photoimmunotherapy (NIR-PIT).

要約

Recent developments in tissue engineering offer innovative solutions for many diseases. For example, tissue engineering using induced pluripotent stem cell (iPS) emerged as a new method in regenerative medicine. Although this tissue regeneration is promising, contamination with unwanted cells during tissue cultures is a major concern. Moreover, there is a safety concern regarding tumorigenicity after transplantation. Therefore, there is an urgent need for eliminating specific cells without damaging other cells that need to be protected, especially in established tissue. Here, we present a method for specific cell elimination from a mixed 3D cell culture in vitro with near infrared photoimmunotherapy (NIR-PIT) without damaging non-targeted cells. This technique enables the elimination of specific cells from mixed cell cultures or tissues.

概要

他の細胞に損傷を与えることなく、特定の細胞を除去することは、特に確立された組織に、非常に困難であり、組織工学の分野における細胞除去方法に対する緊急の必要性があります。 3 -最近再生医療の分野では、胚性幹細胞(ES)、多能性幹細胞(のPSC)、または誘導多能性幹細胞(IPS)を使用して、組織培養、材料1が期待されています。

この組織再生が有望であるが、望ましくない細胞による汚染が主要な関心事です。また、移植4,5後の腫瘍形成能の安全性の懸念があります。多くの研究は、これらの問題に焦点を当ててきたが、特に再生医療6で、特定の細胞を排除するために- 8、実用的な方法が開発されていません。

近赤外photoimmunotherapy(NIR-PIT)は、抗体の光吸収conjugatに基づく治療法ですE(APC)。 APCは、細胞特異的なモノクローナル抗体(mAb)と光吸収、IR700で構成されています。 IR700は、親水性シリカ、フタロシアニン誘導体であり、それ自体9によって光毒性を誘発しません。 IR700は、共有リジン分子の側鎖のアミド残基を介して抗体に結合されます。 APCは、細胞膜上の標的分子に結合し、その後、690 nmの近赤外光への曝露後にほぼ即時の細胞壊死を誘導します。 14 - NIR光への曝露の間に、細胞膜の破裂は、細胞死に9をリード。 21 - NIR-PITは、抗EGFR、抗HER2、抗PSMA、抗CD25、抗メソテリン、抗GPC3、および抗CEA 15を含む複数の抗体または抗体断片と効果的であることが証明されています。したがって、NIR-PITは、標的分子の広範囲に対して使用することができます。また、NIR-PITは、NIR-ガーゼを制限することによって、特定の領域の選択的処理を可能にする十分に制御された治療でありますトン照射18,22。

ここでは、混合3D培養物からNIR-PITを使用して、特定の細胞除去の方法を提示します。

Access restricted. Please log in or start a trial to view this content.

プロトコル

注:以下のプロトコルは、NIR-PITを使用して、特定の細胞を排除するために必要な手順を説明します。コントロールとNIR-PITと細胞生存率に関するその他の詳細は、別の場所で18見つけることができます。

モノクローナル抗体にIR700の1コンジュゲートモノクローナル抗体(mAb)

  1. 0.1 MのNa 2 HPO 4(pHは8.6)溶液中の2-5 mg / mlとに関心のmAbを準備します。
  2. マイクロ遠心チューブ中の0.1MのNa 2 HPO 4溶液(pHは8.6)中の10mM IR700の30.8ナノモルとmAbの6.8ナノモルを混合し、アルミ箔で覆われて1時間、室温でインキュベートします。
  3. 二回、15ミリリットルのPBSでPD-10カラム(材料/機器の表を参照)を洗浄します。ステップ1.2からサンプルをロードします。
  4. 製造業者の指示に従ってPBS溶出により、PD-10カラムを介して混合物を精製します。
    注:ここでは、溶出はIR700のバンド色に沿っていました。 300μlのサンプルについて、PBS溶出画分4.4 mlを典型的には2.5〜mlです。
  5. 決定します分光光度計9で595nmの吸収を測定することによりクマシー染色でタンパク質濃度。各mAb分子9にコンジュゲート蛍光体分子の数を確認するために、689 nmでの吸収がIR700の濃度を決定します。
    注:分光光度計で1モノクローナル抗体でIR700分子の最適なコンジュゲーション数を決定することが重要です。一般的に、1抗体分子中の3 IR700分子の周りには、両方のin vitroおよびin vivoの仕事最適です。 HPLCおよびSDS-PAGE法は、mAbおよびIR700が結合しているか否かを確認するために使用することができます。
  6. タンパク質濃度を決定した後、4℃で保管してください。

混合3D細胞培養(混合スフェロイド)の調製

  1. ドロッププレートをぶら下げのプレート貯留部に無菌水(約1 ml)を適用します。
  2. A431-LUC-GFP細胞および3T3-RFP細胞 - 様々な目的の細胞タイプの比率を準備 -各サンプルは合計5,000個の細胞を含有する培養培地50μlに懸濁しました。
    注:培地中の目的の細胞タイプの割合は、細胞型に応じてその他 100、100、10:100、25:100、50 1を準備します。
  3. 37℃、5%二酸化炭素の加湿インキュベーター内で96ウェル懸滴プレートにおいて5~7日間ミックスをインキュベートします。 2日ごとに培地を変更します。注:正確な3Dスフェロイドを作る静かにプレートを処理するために、細胞を含有する液滴は、3D形状を形成する前に、簡単に落ちるように。
  4. 40X倍率 - 10Xで反転明視野顕微鏡を用いてスフェロイドの形態と大きさを観察します。注:それは細胞の種類やハンギングドロップの大きさに依存するが、回転楕円体の直径は96ウェル懸滴プレート中でのインキュベーションの7日後の周りの400から600ミクロンであることを確認してください。

混合3D細胞培養のためのインビトロ NIR-PIT 3.

  1. ヘクタールのメディアを変更10μg/ mlの抗体光吸収複合体(APC)を含む培地にドロッププレートnging、37℃、5%二酸化炭素の加湿インキュベーター内で6時間インキュベートします。
  2. 6時間のインキュベーション後、新鮮な培地(フェノールレッドを含まない)で2回回転楕円体を洗浄します。先端がカットオフで優しく滅菌200μlのピペットチップを使用して、100μlの新鮮なフェノールレッドを含まない培地でガラス底の50ミリメートル皿にスフェロイドを転送します。各皿に1回転楕円体を配置します。
  3. 形態の変化を検出するために倒立明視野顕微鏡でスフェロイドを守ってください。光学レポーター( 例えば、GFPおよびRFP)を観察するには、以下のフィルタ設定で蛍光顕微鏡を使用する:GFP - 469 nmの励起フィルター、および525 nmの発光フィルター; RFP - 559 nmの励起フィルター、および630nmの発光フィルター。
  4. 照射用ガラスボトムディッシュの上に発光ダイオード(LED)を配置します。
    注:スフェロイドは、NIRに露出させることができます顕微鏡上または層流フード内のいずれかの光。
    1. 光パワーメータ9でNIR光のパワー密度を測定します。この測定によれば、2 J / cm 2で670〜710ナノメートルの波長で光を放射する発光ダイオード(LED)を介して近赤外光を照射します。
      注:LEDの光は、約5インチの最大の深さに浸透することができます。 NIR-PITの細胞傷害性効果は関係なく、電力密度と暴露23の期間だけ与えられたエネルギーに依存しています。
  5. 照射後、新鮮な培地の50μlの新た懸滴プレートに回転楕円体を移し、37℃、5%二酸化炭素の加湿インキュベーター中で1日間インキュベートします。
  6. 優しくカットオフチップで滅菌200μlのピペットチップを使用して、新鮮な培地(フェノールレッドを含まない)の100μlでガラス底の皿にスフェロイドを転送します。 NIR-PIT fiを使って後の蛍光顕微鏡1日でスフェロイドを守ってLTERの設定は、ステップ3.3に記載します。
    1. 、または蛍光顕微鏡( 2B)14,18,22 用いて、細胞質GFP蛍光の消失によって2μg/ mlの最終濃度で培地にヨウ化プロピジウムを添加することによって、死細胞を検出します。
  7. 標的細胞が完全に除去されていない場合、繰り返し3.1~3.6手順。

Access restricted. Please log in or start a trial to view this content.

結果

光学NIR-PITの効果を監視するには、EGFRを過剰発現するA431細胞株は、遺伝的にもGFPおよびルシフェラーゼ(A431-LUC-GFP)を発現するように変更されました。 NIR-PITの非標的として、のBalb / 3T3細胞株を光学的にRFP(3T3-RFP)を発現するように改変しました。 APC、パニツムマブ-IR700(パン-IR700)を合成しました。細胞(A431-LUC-GFPおよび3T3-RFP)の種々の比率で構成された混合ス?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

我々は、NIR-PITを用いて、非標的細胞に損傷を与えることなく、混合三次元細胞培養物から特定の細胞除去の方法を示します。これまでのところ、実用的な細胞除去の方法組織が確立されるか、移植後はありません。したがって、NIR-PITは、これを達成するための有望な方法です。 APCはモノクローナル抗体自体と同様の薬物動態を示すので、この技術は インビボ 18,22

Access restricted. Please log in or start a trial to view this content.

開示事項

著者らは、開示することは何もありません。

謝辞

この研究は、米国立衛生研究所、国立癌研究所、癌研究センターの学内研究プログラムによってサポートされていました。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
IRDye 700DX Ester Infrared DyeLI-COR Bioscience (Lincoln, NE, USA)929-70011
Na2HPO4SIGMA-ALDRICH (St. Louis, MO, USA)S9763
Sephadex G25 column (PD-10) GE Healthcare (Piscataway, NJ, USA)17-0851-01
Coomassie (bradford) Plus protein assayThermo Fisher Scientific Inc (Waltham, MA, USA)PI-23200
Perfecta3D 96-Well hanging Drop Plates3D Biomatrix Inc (Ann Arbor, MI, USA)HDP1096-8
Optical power meterThorlabs (Newton, NJ, USA)PM100
LED: L690-66-60Marubeni America Co. (Santa Clara, CA, USA)L690-66-60
Vectibix (panitumumab)Amgen (Thousand Oaks, CA, USA)
35 mm glass bottom dish, dish size 35 mm, well size 10 mmCellvis (Mountain View, CA, USA)D35-10-0-N

参考文献

  1. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481 (7381), 295-305 (2012).
  2. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell stem cell. 10 (6), 678-684 (2012).
  3. Birchall, M. A., Seifalian, A. M. Tissue engineering's green shoots of disruptive innovation. Lancet. 6736 (14), 11-12 (2014).
  4. Ben-David, U., Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer. 11 (4), 268-277 (2011).
  5. Hanna, J. H., Saha, K., Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 143 (4), 508-525 (2010).
  6. Lee, M. -O., Moon, S. H., et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. U.S.A. 110 (35), 3281-3290 (2013).
  7. Miura, K., Okada, Y., et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27 (8), 743-745 (2009).
  8. Tang, C., Lee, A. S., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29 (9), 829-834 (2011).
  9. Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L. Cancer cell - selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17 (12), 1685-1691 (2011).
  10. Mitsunaga, M., Nakajima, T., Sano, K., Kramer-Marek, G., Choyke, P. L., Kobayashi, H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 12 (1), 345(2012).
  11. Nakajima, T., Sano, K., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res. 72 (18), 4622-4628 (2012).
  12. Sano, K., Mitsunaga, M., Nakajima, T., Choyke, P. L., Kobayashi, H. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET. J. Nucl. Med. 54 (5), 770-775 (2013).
  13. Sato, K., Watanabe, R., et al. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 8 (3), 620-632 (2014).
  14. Sato, K., Nagaya, T., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett. 365 (1), 112-121 (2015).
  15. Sato, K., Hanaoka, H., Watanabe, R., Nakajima, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 14 (8), 141-150 (2014).
  16. Sato, K., Choyke, P. L., Kobayashi, H. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PloS one. 9 (11), 113276(2014).
  17. Sato, K., Nagaya, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC Preclinical Experience. Theranostics. 5 (7), 698-709 (2015).
  18. Sato, K., Nakajima, T., Choyke, P. L., Kobayashi, H. Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Adv. 5, 25105-25114 (2015).
  19. Watanabe, R., Hanaoka, H., et al. Photoimmunotherapy Targeting Prostate-Specific Membrane Antigen: Are Antibody Fragments as Effective as Antibodies. J. Nucl. Med. 56 (1), 140-144 (2014).
  20. Nakajima, T., Sano, K., Choyke, P. L., Kobayashi, H. Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics. 3 (6), 357-365 (2013).
  21. Shirasu, N., Yamada, H. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer. 135 (11), 1-14 (2014).
  22. Sato, K., Nagaya, T., Nakamura, Y., Harada, T., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget. 6 (23), 19747-19758 (2015).
  23. Nakajima, T., Sato, K., et al. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC cancer. 14 (1), 389(2014).
  24. Klimanskaya, I., Rosenthal, N., Lanza, R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 7 (2), 131-142 (2008).
  25. Burmester, G. R., Feist, E., Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10 (2), 77-88 (2014).
  26. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12 (4), 252-264 (2012).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

109 3D photoimmunotherapy

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved