このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
A protocol for the photochemical oxidative growth of small crystalline iridium oxide nanoparticles on the surface of CdSe@CdS seeded rod nanoparticles is presented.
We demonstrate a procedure for the photochemical oxidative growth of iridium oxide catalysts on the surface of seeded cadmium selenide-cadmium sulfide (CdSe@CdS) nanorod photocatalysts. Seeded rods are grown using a colloidal hot-injection method and then moved to an aqueous medium by ligand exchange. CdSe@CdS nanorods, an iridium precursor and other salts are mixed and illuminated. The deposition process is initiated by absorption of photons by the semiconductor particle, which results with formation of charge carriers that are used to promote redox reactions. To insure photochemical oxidative growth we used an electron scavenger. The photogenerated holes oxidize the iridium precursor, apparently in a mediated oxidative pathway. This results in the growth of high quality crystalline iridium oxide particles, ranging from 0.5 nm to about 3 nm, along the surface of the rod. Iridium oxide grown on CdSe@CdS heterostructures was studied by a variety of characterization methods, in order to evaluate its characteristics and quality. We explored means for control over particle size, crystallinity, deposition location on the CdS rod, and composition. Illumination time and excitation wavelength were found to be key parameters for such control. The influence of different growth conditions and the characterization of these heterostructures are described alongside a detailed description of their synthesis. Of significance is the fact that the addition of iridium oxide afforded the rods astounding photochemical stability under prolonged illumination in pure water (alleviating the requirement for hole scavengers).
光触媒は、再生可能エネルギー発電や、水処理や空気浄化1-3のような他の環境のアプリケーションのための魅力的で有望な解決策を提示します。太陽エネルギーで駆動される総合的な水分解は、クリーンで再生可能な水素燃料の供給源である可能性があります。しかし、研究の数十年にもかかわらず、実用に十分に安定的かつ効率的なシステムはまだ実現されていません。
光析出半導体媒介される光触媒の両方は、光生成された電子 - 正孔対を分離し、それらが酸化還元反応を開始することができ、表面にそれらを駆動するのと同じメカニズムに依存しています。これら2つのプロセス間の類似性は、光触媒4-6のフィールドのための魅力的な合成ツールを光析出作ります。この方法は、新規で未開拓のフロンティアに光触媒生産を取ることが期待されます。これは、潜在的に空間配置の上に自然のままの制御を提供するかもしれませんヘテロ構造における異なる成分の、洗練されたナノ粒子系を構築する能力を進めます。最終的にはこの方法は、一歩近づく直接太陽対燃料エネルギー変換のための効率的な光触媒を実現するため、私たちをもたらすでしょう。
水の酸化7-11のための効率的な触媒であることが知られているように、我々は、共触媒としてのIrO 2の成長を調べました。 12,13のロッド(硫化カドミウム)に埋め込 まれた量子ドット(CdSeの)の調整可能な構造は、当社の光触媒基板14,15として使用しました。酸化経路が媒介経路を介して、または直接ホール攻撃によって発生するかどうかは現在未定です。ここでは、半導体ヘテロ構造における正孔の上に私たちの知識と制御が酸化反応のメカニズムの研究のために利用することができます。これは、の閉じ込められた穴16,17と形成の局在化を促進する基板アーキテクチャによって可能になりますロッド上の別個の酸化反応サイト。ローカライズされた電荷キャリアを有するナノスケール材料の使用は、製品の簡単な検査により、酸化還元反応の機構的研究のために利用することができます。このように光析出は、還元および酸化の両方の反応経路の固有のプローブとして使用することができます。これは、光析出し、エッジコロイド合成18-20を切断の組み合わせによってもたらされる新しいエキサイティングな可能性の一例です。
水分解と再生可能エネルギー変換のための効率的な光触媒を開発するためのクエストは、材料のコミュニティ内での重要な推進力となっています。これは、光化学的不安定性によって妨げられているが、水素製造のために非常に活性であることが知られているCDやの世界的関心に拍車をかけました。私たちの仕事は、ここで材料のアキレス腱を扱います。 IrO 2飾られたCdSe @のCdSのロッドは、純粋で長期の照明の下で顕著な光化学的安定性を実証水。
量子ドット21の1の合成
シードのRO 2.合成DS 21
水溶液にシードロッドの3譲渡
イリジウムナノ結晶粒子の4成長
透過型電子顕微鏡写真(TEM)を播種し、ロッド( 図1)上の酸化イリジウムの分布を確認するために収集しました。 TEMサンプルをTEM格子上に溶解した粒子の落下をピペッティングすることによって調製しました。 X線回折(XRD、 図2)、X線光電子スペクトル(XPS、 図3)は 、結晶性のIrO 2及びIr 2 O 3の混合?...
CdSの播種棒@ CdSeの種子とのCdSeの合成はよく21,24,25を検討されています。これらの基材粒子の合成のステップの量、温度、および時間のわずかな改変は、その長さ、直径、および/または形態をチューニングするために使用することができます。本明細書に記載される合成プロトコルは、均一な寸法の高度にフォトルミネシードの-ロッドが得られます。
配位子交換...
著者らは、開示することは何もありません。
本研究では、計画と予算委員会とイスラエル科学財団(助成金番号11分の152)のI-COREプログラムによってサポートされていました。改装された研究室やスタートアップパッケージのイスラエル工科大学 - 私たちは、化学とテクニオンのシューリック学部に感謝します。また、この原稿で使用するためにhttp://dx.doi.org/10.1039/C4TA06164Kから材料を適応させるに許可を化学の王立協会に感謝します。博士Kalismanは感謝彼らのサポートのためのシューリックポスドクフェローシップを。私たちは彼のHR-TEMおよびHAADFの支援だけでなく、XPSの特性評価と彼女の支援のための博士Kamira Weinfeld博士ヤロンカウフマンに感謝します。
Name | Company | Catalog Number | Comments |
Sulfur (S) | Sigma | 84683 | |
Selenium (Se) | Sigma | 229865 | |
Cadmium Oxide (CdO) | Sigma | 202894 | Highly Toxic |
n-Octadecylphosphonic acid (ODPA) | Sigma | 715166 | |
Propylphosphonic acid (PPA) | Sigma | 305685 | Highly regulated in some countries and regions |
Butylphosphonic acid (BPA) | Sigma | 737933 | Alternative to PPA |
Hexylphosphonic acid (HPA) | Sigma | 750034 | Alternative to PPA |
Trioctylphosphonic oxide (TOPO) | Sigma | 346187 | |
Tri-n-octylphosphine, 97% (TOP) | Sigma | 718165 | Air sensitive |
Spectrochemical Stirbar | Sigma | Z363545 | |
Sodium Hydroxide | Sigma | S5881 | |
Methanol | Sigma | 322415 | |
Toluene | Sigma | 244511 | |
Hexane | Sigma | 296090 | |
Octylamine | Sigma | 74988 | |
Nonanoic Acid | Sigma | N5502 | |
Isopropanol | Sigma | 278475 | |
Mercaptoundecanoic Acid (MUA) | Sigma | 674427 | |
Tetramethylammonium Hydroxide (TMAH) | Sigma | T7505 | |
Apiezon H Grease (high temperature grease) | Sigma | Z273562 | |
Sodium Persulfate | Sigma | 216232 | |
Sodium Nitrate | Sigma | 229938 | |
Sodium Hexachloroiridate(III) hydrate | Sigma | 288160 | |
Mounted 455 nm LED | Thorlabs | M455L3 | |
Cuvette Holder | Thorlabs | CVH100 | |
25 ml 3-neck Round Bottom Flask | Chemglass | CG-1524-A-02 | |
Liebig Condensor | Chemglass | CG-1218-A-20 | |
T-Joint Adapter | Chemglass | AF-0509-10 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved