JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

Here we describe a method for bacterial RNA isolation from Listeria monocytogenes bacteria growing inside murine macrophages. This technique can be used with other intracellular pathogens and mammalian host cells.

要約

Analysis of the transcriptome of bacterial pathogens during mammalian infection is a valuable tool for studying genes and factors that mediate infection. However, isolating bacterial RNA from infected cells or tissues is a challenging task, since mammalian RNA mostly dominates the lysates of infected cells. Here we describe an optimized method for RNA isolation of Listeria monocytogenes bacteria growing within bone marrow derived macrophage cells. Upon infection, cells are mildly lysed and rapidly filtered to discard most of the host proteins and RNA, while retaining intact bacteria. Next, bacterial RNA is isolated using hot phenol-SDS extraction followed by DNase treatment. The extracted RNA is suitable for gene transcription analysis by multiple techniques. This method is successfully employed in our studies of Listeria monocytogenes gene regulation during infection of macrophage cells 1-4. The protocol can be easily modified to study other bacterial pathogens and cell types.

概要

細胞内細菌性病原体─感染症とヒト宿主の内部細胞を増殖し、再生することができるの原因となる細菌は─世界の主要な健康問題5です。侵入し、哺乳動物細胞内で複製するには、細胞内病原体は、洗練された病原性のメカニズムと要因を取得しています。これらのメカニズムは、疾患を引き起こす能力の基本であるが、我々は彼らの規制とダイナミクスについて少し知っています。液体培地中で増殖させた細菌の遺伝子発現プロファイルは、宿主細胞内の実際の環境を反映していないので、それらの細胞内ニッチで増殖した細菌のトランスクリプトーム解析の必要性が高まっています。このような分析は、ホストによってトリガーした特定の細菌の適応の解読を可能にし、治療設計のための新しいターゲットを識別するのに役立ちます。哺乳動物のRNAがでによって細菌RNAを上回っているため、細胞内で増殖させた細菌のトランスクリプトーム解析は非常に困難です少なくとも10倍。本稿では、我々は、マウスマクロファージ細胞内で成長しているリステリア菌の細菌から細菌RNAを単離するための実験方法を説明します。抽出されたRNAは、RT-PCR、RNA-のSeq、マイクロアレイおよび他のハイブリダイゼーションに基づく技術のような転写分析の様々な技術によって、病原性細菌の細胞内の適応と毒性メカニズムを研究するために使用することができます。

リステリア菌は、ヒトのリステリア症の原因物質で、主に免疫無防備状態の個体、高齢者や妊娠中の女性6をターゲット臨床症状を伴う疾患です。それ 7を研究する宿主-病原体相互作用でモデルとして何十年も使用されてきた哺乳動物細胞の広い配列に侵入グラム陽性の通性細胞内病原体です。侵略の際に、それはトンにエスケープする必要があり、そこから液胞または(食細胞の場合)ファゴソームに最初に存在します彼は、複製するために細胞質ゾルをホストします。いくつかの病原性因子は、エスケープ処理、主に細孔形成溶血素、リステリオリシンO(LLO)および2つの追加のホスホリパーゼ8を媒介することが示されています。細胞質ゾル中の細菌は細胞内のアクチンフィラメント上で自分自身を推進すると( 図1)細胞から細胞へ拡散するためにホストアクチン重合の機械を使用しています。 L.のすべての主要な病原性因子侵入に関与モノサイトゲネス 、細胞内生存および複製、マスター病原性転写調節因子、PRFAによって活性化される。8-10。

この10年間、私たちと他の人が行ったいくつかの研究は、正常宿主細胞2,11-15内部の細胞内で増殖させた細菌のトランスクリプトーム解析のための方法を適用しています。 diffeによる細菌RNAの1)選択的濃縮および2)RNA単離:二つの主要なアプローチが基づいているホスト-RNAから細菌RNAを分離するために使用されますrential細胞溶解。最初のアプローチは、(市販のキットを用いて、例えば)は、哺乳動物RNA分子または細菌転写配列(SCOTS)11を選択的に捕獲する全RNA抽出物のサブトラクティブハイブリダイゼーションに依存しています。第二のアプローチは、細菌細胞が無傷のままで宿主細胞が溶解された細菌宿主細胞の示差溶解に依存します。バクテリア細胞は、次いで、通常、遠心分離によって、宿主細胞溶解物から分離され、そしてRNAは、標準的な技術を使用して抽出されます。このアプローチを使用して主な問題は、一緒に完全な細菌を、宿主細胞の核は、したがって、RNA調製物はまだ、哺乳類RNAを含んでも単離されていることです。この問題を克服する一つの方法は、この手順は、通常、抽出中の遺伝子発現プロファイルの変化の懸念を高める時間を要するものの、分画遠心法を用いて、宿主細胞の核から無傷の細菌を分離することです。本稿では、改善されたと迅速なBAを提示します細胞差動溶解アプローチに基づいているcteria RNA抽出プロトコル。まず、L.モノサイトゲネス感染マクロファージ細胞を冷水で溶解します。次に、マクロファージ核を短時間の遠心分離によって除去され、無傷の細菌が急速にそのRNAからの細菌の核酸のホットフェノールSDS抽出を使用して単離し、フィルター上に収集されます。

プロトコル

注:全実験の間に、マクロファージ細胞を、5%CO 2、強制空気インキュベーター中で37℃でインキュベートされ、唯一のクラスII生物学的安全キャビネット内で実施される実験操作、インキュベーターから取り出し。 L.での作業モノサイトゲネス細菌は生物学的安全性レベル2規則に従っています。

1.細胞の調製および細菌感染(1日目および2)

  1. 1日目
    1. 30ミリリットルBMDM +ペニシリン-ストレプトマイシンメディア( 表2)145 mmディッシュ上にシード2.0×10 7骨髄由来マクロファージ細胞(BMDM)。各細菌株のシード3のプレートを分析します。 5%CO 2、強制空気インキュベーター中で37℃で一晩インキュベートします。
    2. 野生型(WT)L.の一晩の細菌培養を開始モノサイトゲネスは、標準的なインキュベーター中で30℃でのブレインハートインフュージョン(BHI)培地10mlに10403S株。場所培養管を振盪せずに斜め。注意:これらの成長条件は、効率的な感染を促進鞭毛遺伝子の発現をアップレギュレートします。
  2. 2日目
    1. 37℃でのプレ暖かいBMDMの(ペニシリン-ストレプトマイシン抗生物質なし)培地( 表2)、リン酸緩衝生理食塩水(PBS)。
    2. 抗生物質を除去するために、予め温めておいたPBS 25mlで二回マクロファージ単層を洗浄します。 30ミリリットルの新鮮なBMDM培地を追加します。
    3. 、1分間> 14,000×gで細菌を遠心分離し、上清を廃棄し、ピペッティングによりPBS 1.5 ml中に静かに細菌を再懸濁することにより、PBSで一晩細菌培養の1.5ミリリットルを洗います。二回繰り返します。
    4. 野生型L.の洗浄一晩培養物0.5mlで各マクロファージプレートに感染モノサイトゲネス 。複数のプレートを使用している場合は、15分間隔で各プレートに感染します。この時間間隔は、感染の終了時に個別に各プレートを収穫できるようになります。
      注意:感染の多重度(MOI)を連続希釈をめっきすることによってアッセイされます細菌培養物のSはBHI寒天プレート上での感染のために使用し、37℃でのプレートの24時間のインキュベーション後にコロニー形成単位(CFU)をカウントします。 WT L.の0.5ミリリットルを使用して、 モノサイトゲネスは、〜100のMOIで10403S結果(マクロファージ細胞当たり100細菌CFU)を株。細胞内増殖に欠陥細菌の変異体を分析する場合、より高いMOIを考慮すべきです。
    5. 37℃で0.5時間インキュベーションした後、付着していない細菌を除去するために、PBSで2回感染した細胞を洗浄し、30ミリリットル予め温めておいたBMDM媒体を追加します。付着した細菌は、次の0.5時間の間に内部化されます。
    6. 細胞外細菌を殺すために:(50μg/ mlの最終濃度に達するように千1)1時間後の感染では、ゲンタマイシンの30μlを添加します。
    7. 真空出口ポートを備えた液体回収フラスコにフィルタヘッドを配置することによって、フィルタ装置を組み立てます。そして、シリンダー漏斗に続くフィルタヘッド、上のフィルター(0.45μm)を配置し、金属Cと異なる部分を確保ランプ。氷のように冷たいRNaseフリー水を準備します。
    8. 次のように感染した細胞から6時間感染後、収穫菌で。各プレートは個別に扱います。
      注:通常、L.モノサイトゲネスは、マクロファージ細胞における感染の6時間の間に成長の1-ログを完了します。短い潜伏期間がかなり低い細菌負荷につながる可能性がありながら、より長いインキュベーションは、細菌異常増殖およびマクロファージの細胞死につながる可能性があります。 MOI感染の時間は、最適条件に到達するために変更することができます。
      1. PBSで1回に感染した細胞を洗浄。マクロファージ細胞を溶解させ、氷冷のRNaseフリー水20ミリリットルを追加します。セルスクレーパーを使用して、迅速しかし慎重にプレートから細胞をこすり取ります。
      2. 50ミリリットルコニカルチューブに溶解した細胞を収集します。 30秒間ボルテックス。 4℃で3分間、800×gで遠心分離します。
      3. 真空システムを使用してフィルタ装置を介して上清を渡します。ピンセットを使用して15mlのCONIに転送迅速フィルタロールとCALチューブ。液体窒素中でフィルタを使用してチューブをスナップ凍結。
      4. 1.2.7で説明したように、次のサンプルのための新しいフィルターでろ過装置を組み立てます。
      5. 次の日のために-80℃で凍結したフィルタを格納します。あるいは、核酸抽出に直接進みます。

2.核酸抽出(3日目)

注:ドラフト内でフェノール及びクロロホルムソリューションですべての操作を実行します。

  1. 酸性フェノールの1ミックス:クロロホルム、各サンプルの400μlの1を準備します。別々のチューブに混合し、その後吸引により得られた水層を撤回。 10%SDSを40μlのを追加します。
  2. 冷たいそれらを保つために氷の上にフィルタ収容管を解凍します。各フィルタを含むチューブに酢酸EDTA(AE)のバッファ( 表2)の650μlを添加します。
  3. 可能な限り迅速に次の手順を実行します。
    1. 積極的にそのようにフィルタを含むチューブをボルテックスフィルタは、管の周囲に案内いたしますと、バッファは完全にフィルターを洗うこと。常に氷上に戻ってそれを置くことによって、チューブの寒さを保ちます。注:反転しながら、さらに、完全にオフフィルタ細菌を洗浄するために、チューブをボルテックスする必要があるかもしれません。
    2. すべてのチューブのために繰り返します。スピンダウンするまもなく懸濁液(120×gで1分間)プロセスの終了時に有用であり得ます。
  4. SDSおよびフェノール/クロロホルムミックス(2.1で調製した)含む1.5 mlマイクロチューブに細菌含有緩衝液を移します。すべてのチューブのために繰り返します。フィルターから残った液を得るために再びチューブを含むフィルター(120×gで1分間)をスピンする必要があるかもしれません。
  5. マルチチューブボルテックスデバイス内のすべての1.5ミリリットルチューブを置き、10分間フルスピードでボルテックス。
  6. 10分間65℃のヒートブロック中で管をインキュベートします。 5分間最大速度で遠心分離(> 14,000 XG)。
  7. 各トンから水層(約400μl)を転送3 M酢酸ナトリウム(pH 5.2)1.0 mlで100%エタノールの40μLを含む新しい1.5mlチューブにUBE。徹底的に各チューブをボルテックス。
    注:グリコーゲンを沈殿ペレットの可視化を向上させるために、この段階で添加することができます。
  8. 1時間-80℃でサンプルをインキュベートします。また、Cで一晩-20℃でサンプルをインキュベートします。そして、最大速度(> 14,000 XG)で20分間4℃でサンプルを遠心します。
  9. 慎重に各チューブからのエタノール(上層)を吸引します。徹底的に各サンプルと渦に500μlの冷70%エタノールを追加します。最高速度(> 1 4000 XG)で20分間4℃で遠心分離します。
  10. 慎重に各チューブからエタノールを吸引します。加熱なしで真空蒸着装置を用いて約2分間のサンプルを乾燥させます。サンプルを過乾燥させないでください。
  11. 各サンプルに25μlのRNaseフリー水を追加します。 20分間室温でインキュベートします。慎重にボルテックスとスピンダウン。
  12. T中のRNA濃度を測定微量紫外可視分光光度計を使用して彼のサンプル。 1μgのプレート当たりの核酸 - 約0.5を抽出することを期待しています。
    注:技術的反復は、この段階で組み合わせることができます。

3. DNアーゼ治療

  1. マイクロチューブ内の表1に従って反応を設定します。 45分間37℃でインキュベートします。最大速度で2分間遠心分離することにより、450μlのRNaseフリー水とフェノール-クロロホルム- IAAミックス( 表2)500μlの、別々の相を追加します(> 14,000 XG)。
  2. 新しいチューブに水層を移し、500μlのクロロホルム- IAAミックス( 表2)を追加 、最大速度で2分間の遠心分離によって渦と別々の相(> 14,000 XG)。
  3. 新しいチューブに水層を移し、エタノール1mlの3 M酢酸ナトリウム(pH5.2)の50μLを加えます。渦。
    注:グリコーゲンを沈殿ペレットの可視化を向上させるために、この段階で添加することができます。
  4. は-80℃で1時間インキュベートします。また、Cで一晩-20℃でサンプルをインキュベートします。最大速度で20分間4℃で遠心分離します。
  5. 慎重に各チューブからエタノールを吸引します。徹底的に各サンプルと渦に500μlの冷70%エタノールを追加します。最高速度で20分間4℃で遠心分離します。慎重に各チューブからエタノールを吸引します。
  6. 加熱なしで真空蒸着装置を用いて約2分間のサンプルを乾燥させます。サンプルを過乾燥させないでください。
  7. 室温、ボルテックス、およびスピンダウンで2分間インキュベートし、RNaseフリー水12μlのを追加します。サンプルは、精製されたRNAが含まれている氷の上に保管してください。あるいは、0.1mMのEDTAまたはTE緩衝液(10mMのTris、1mMのEDTA)を用いてRNaseを含まないH 2 O中のRNAを溶かします。
  8. 微量紫外可視分光光度計を用いてRNA濃度を測定します。 (技術的反復を併用した場合)、サンプルあたりのRNAの〜100 ngのを期待しています。
    注:このプロトコルに従って抽出したRNAは、foのに適しています多数の技術によりR遺伝子の転写解析。我々は通常、Lを研究するためにRT-qPCR分析を採用しますマクロファージ細胞1-4の感染の間に遺伝子転写をモノサイトゲネス

結果

モデルシステムは、 図1に示され、L.に感染したマクロファージ細胞を含みますマクロファージ細胞質ゾル中で複製モノサイトゲネス菌 、。 図2は実験スキームを表す。 図3は、WT L.中の病原性遺伝子のようなRT-qPCR分析の典型的な結果を表します豊富な実験室培地BHIの成長と比較して、マクロファージの成長を<...

ディスカッション

ここで説明するプロトコルは、Lからの細菌RNAの単離のために最適化された方法を表しマクロファージ細胞において細胞内で増殖する細菌をモノサイトゲネス 。このプロトコルは、細胞微分溶解に基づいており、細菌RNAの濃縮のための2つの主要なステップ含んでいる:遠心分離を用いてマクロファージ核沈殿、濾過による細菌の迅速な収集を。これらのステップは、標準のRNA抽?...

開示事項

The authors have nothing to disclose.

謝辞

The research in the Herskovits lab is supported by 335400 ERC and R01A/109048 NIH grants.

資料

NameCompanyCatalog NumberComments
Listeria monocytogenes 10403S20
Bone marrow derived macrophages prepared from C57B/6 female mice21
H2O, RNAse freeThermo Scientific10977-015DEPC-treated water can be used
DMEMGibco41965039
GlutamineGibco25030081
Sodium pyruvateGibco11360-088
β-MercaptoethanolGibco31350010
Pen/StrepGibco15140-122
GentamicinSigma-AldrichG1397
FBSGibco10270106
Dulbecco’s Phosphate Buffered Saline-PBSSigma-AldrichD8537
Brain heart infusion (BHI)Merckmillipore1104930500
Phenol saturated pH 4.3FisherBP1751I-400
ChloroformFisherBP1145-1
Iso-amyl alcoholSigma-AldrichW205702
Sodium acetateSigma-AldrichW302406
EDTASigma-AldrichEDS
DNaseIFermentasEN0521
SDS 10%Sigma-AldrichL4522
Ethanol absoluteMerck Millipore1070174000
37 °C, 5% CO2 forced-air incubatorThermo ScientificModel 3111
Cell scrapersNunc179693
Kontes glass holder for 45 mm filtersFisherK953755-0045
MF-Millipore filters 45 mm, 0.45 µmMerck MilliporeHAWP04700
SpeedVac systemThermo ScientificSPD131DDA
Vortex-Genie 2Scientific IndustriesModel G560E
NanoDropThermo Scientific
145 mm cell culture dishesGreiner639 160
1.7 ml tubes, RNase-freeAxygenMCT-175-C
30 °C incubatorThermo Scientific
65 °C heat blockThermo Scientific
4 °C table centrifugeEppendorf5417R
Sterile pipettes, 25 mlGreiner
Falcon tubes, 50 mlGreiner
Liquid nitrogen

参考文献

  1. Lobel, L., et al. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol. , (2014).
  2. Lobel, L., Sigal, N., Borovok, I., Ruppin, E., Herskovits, A. A. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet. 8 , e1002887 (2012).
  3. Kaplan Zeevi, M., et al. Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol. 195, 5250-5261 (2013).
  4. Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R., Herskovits, A. A. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell. 150, 792-802 (2012).
  5. Swaminathan, B., Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 9, 1236-1243 (2007).
  6. Hamon, M., Bierne, H., Cossart, P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 4, 423-434 (2006).
  7. Dussurget, O., Pizarro-Cerda, J., Cossart, P. Molecular determinants of listeria monocytogenes virulence. Ann Rev Microbiol. 58, 587-610 (2004).
  8. Portnoy, D. A., Auerbuch, V., Glomski, I. J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol. 158, 409-414 (2002).
  9. Freitag, N. E., Port, G. C., Miner, M. D. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol. 7, 623-628 (2009).
  10. Graham, J. E., Clark-Curtiss, J. E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A. 96, 11554-11559 (1999).
  11. Toledo-Arana, A., et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 459, 950-956 (2009).
  12. Schnappinger, D., et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med. 198, 693-704 (2003).
  13. Albrecht, M., Sharma, C. M., Reinhardt, R., Vogel, J., Rudel, T. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38, 868-877 (2010).
  14. La, M. V., Raoult, D., Renesto, P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev. 32, 440-460 (2008).
  15. Westermann, A. J., Gorski, S. A., Vogel, J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 10, 618-630 (2012).
  16. Rienksma, R. A., et al. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics. 16, 34 (2015).
  17. Afonso-Grunz, F., et al. Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells. BMC Genomics. 16, 323 (2015).
  18. Englen, M. D., Valdez, Y. E., Lehnert, N. M., Lehnert, B. E. Granulocyte/macrophage colony-stimulating factor is expressed and secreted in cultures of murine L929 cells. J Immunol Methods. 184, 281-283 (1995).
  19. Becavin, C., et al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio. 5, e00969-e900914 (2014).
  20. Celada, A., Gray, P. W., Rinderknecht, E., Schreiber, R. D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med. 160, 55-74 (1984).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

112 RNA RNA

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved