このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
我々はNGT-3DとNGB-3Dと呼ばれる3D線虫の栽培システムを構築するための簡単な方法を提示します。これらは、標準的な2D実験室のC.エレガンス培養プレートより自然な線虫(Caenorhabditis elegans)の生息地に類似している生息地における線虫のフィットネスや行動を研究するために使用することができます。
The use of genetic model organisms such as Caenorhabditis elegans has led to seminal discoveries in biology over the last five decades. Most of what we know about C. elegans is limited to laboratory cultivation of the nematodes that may not necessarily reflect the environments they normally inhabit in nature. Cultivation of C. elegans in a 3D habitat that is more similar to the 3D matrix that worms encounter in rotten fruits and vegetative compost in nature could reveal novel phenotypes and behaviors not observed in 2D. In addition, experiments in 3D can address how phenotypes we observe in 2D are relevant for the worm in nature. Here, a new method in which C. elegans grows and reproduces normally in three dimensions is presented. Cultivation of C. elegans in Nematode Growth Tube-3D (NGT-3D) can allow us to measure the reproductive fitness of C. elegans strains or different conditions in a 3D environment. We also present a novel method, termed Nematode Growth Bottle-3D (NGB-3D), to cultivate C. elegans in 3D for microscopic analysis. These methods allow scientists to study C. elegans biology in conditions that are more reflective of the environments they encounter in nature. These can help us to understand the overlying evolutionary relevance of the physiology and behavior of C. elegans we observe in the laboratory.
The study of the nematode Caenorhabditis elegans in the laboratory has led to seminal discoveries in the field of biology over the last five decades1. C. elegans was the first multicellular organism to have its genome sequenced in 19982, and it has been invaluable in understanding the contributions of individual genes to the development, physiology, and behavior of a whole organism. Scientists now are looking to further understand how these genes may contribute to the survival and reproductive fitness of organisms in their natural environments, asking questions about ecology and evolution at the genetic level3-5.
C. elegans once again can provide an excellent system to answer these questions. However, little is known about C. elegans biology in natural nematode habitats, and there are no current methods to simulate controlled natural conditions of C. elegans in the laboratory. In the lab, C. elegans is cultivated on the surface of agar plates seeded with E. coli bacteria6. In nature, however, C. elegans and related nematodes can be found sparsely inhabiting soils throughout the globe, but they are specifically found thriving in rotting fruits and vegetative matter7,8. These three-dimensional (3D) complex environments are quite different from the simple 2D environments to which worms are exposed to in the laboratory.
To begin to answer questions about the biology of nematodes in a more natural 3D setting, we have designed a 3D habitat for laboratory cultivation of nematodes we called Nematode Growth Tube 3D or NGT-3D for short9. The goal was to design a 3D growth system that allows for comparable growth, development, and fertility to the standard 2D Nematode Growth Media (NGM) plates10. This system supports the growth of bacteria and nematodes over their entire life cycles in 3D, allows worms to move and behave freely in three dimensions, and is easy and inexpensive to manufacture and employ.
In the current study, we provide a step-by-step method to manufacture NGT-3D and evaluate worm development and fertility. In addition to assessing worm fitness in 3D, we sought to image, video, and assess worm behavior and physiology in 3D cultivation. Thus, in addition to NGT-3D, we present here an alternate method called Nematode Growth Bottle 3D or NGB-3D, for the microscopic imaging of C. elegans during 3D cultivation. This will be especially important for the study of known behaviors identified in 2D, and the identification of novel behaviors unique to 3D cultivation.
1. NGT-3DとNGB-3Dのためのソリューションを準備
2. NGT-3DとNGB-3Dのための細菌培養を準備
3.メイキングNGT-3DとNGB-3D(200ミリリットル)
NGT-3D(相対同腹サイズアッセイ)上でワームの人口の4メジャーフィットネス
5.イメージとNGB-3Dでの録音ワームの動作
NGT-3Dの建設は、寒天( 図1A)全体に間隔をあけ小さな細菌コロニーを寒天で満たされた試験管になり、シンプルで簡単なプロトコルです。ワームは自由に細菌コロニーを発見し、消費し、寒天マトリックスを通って移動することができます。 C.エレガンスが再現し、NGT-3Dで正常に成長できるかどうかを確認するために、我々は標準的な2D NGMプレー?...
古典的な線虫の増殖培地プレートを使用して、 線虫の実験室での栽培は、 線虫の研究が提供していることが重要な発見の数百に非常に重要でした。ここで、我々はより正確に自然な立体生息環境を反映している環境で、 線虫を育成する新たな方法を提示します。他の方法は、3D 13の線虫を観察するために使用されているが、これは、固体三次元マトリック...
The authors have nothing to disclose.
この作品は、韓国国立研究財団(NRF)からJILへの新しい研究者グラント【2014R1A1A1005553]によってサポートされていました。 [2015-22-0133] JILへと延世大学の未来のリーダーチャレンジグラント
Name | Company | Catalog Number | Comments |
LB broth, Miller (Luria-Bertani) | Difco | 224620 | |
Sodium chloride | DAEJUNG | 7548-4400 | 58.44 MW |
Agar, Granulated | Difco | 214530 | |
Peptone | Bacto | 211677 | |
Calcium chloride, dihydrate | Bio Basic | CD0050 | 2*H2O; 147.02 MW |
Cholesterol | Bio Basic | CD0122 | 386.67 MW |
Ethyl alcohol | B&J | RP090-1 | 99.99%; 46.07 MW |
Magnesium sulfate, anhydrous | Bio Basic | MN1988 | 120.37 MW |
Potassium phosphate, monobasic, anhydrous | Bio Basic | PB0445 | 136.09 MW |
2'-Deoxy-5-fluorouridine | Tokyo Chemical Industry | D2235 | 246.19 MW |
Potassium phosphate, dibasic, anhydrous | Bio Basic | PB0447 | 174.18 MW |
Multi-Purpose Test Tubes | Stockwell Scientific | ST.8570 | 8 ml |
Test Tube Closures | Stockwell Scientific | ST.8575 | |
Cell Culture Flask | SPL Lifescience | 70125 | 25 cm2 |
Research Stereo Microscope | Nikon | SMZ18 | |
High-Definition Color Camera Head | Nikon | DS-Fi2 | |
PC-Based Control Unit | Nikon | DS-U3 | |
NIS-Elements Basic Research, Microscope Imaging Software | Nikon | MQS32000 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved