A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a simple method to construct 3D nematode cultivation systems called NGT-3D and NGB-3D. These can be used to study nematode fitness and behaviors in habitats that are more similar to natural Caenorhabditis elegans habitats than the standard 2D laboratory C. elegans culture plates.
The use of genetic model organisms such as Caenorhabditis elegans has led to seminal discoveries in biology over the last five decades. Most of what we know about C. elegans is limited to laboratory cultivation of the nematodes that may not necessarily reflect the environments they normally inhabit in nature. Cultivation of C. elegans in a 3D habitat that is more similar to the 3D matrix that worms encounter in rotten fruits and vegetative compost in nature could reveal novel phenotypes and behaviors not observed in 2D. In addition, experiments in 3D can address how phenotypes we observe in 2D are relevant for the worm in nature. Here, a new method in which C. elegans grows and reproduces normally in three dimensions is presented. Cultivation of C. elegans in Nematode Growth Tube-3D (NGT-3D) can allow us to measure the reproductive fitness of C. elegans strains or different conditions in a 3D environment. We also present a novel method, termed Nematode Growth Bottle-3D (NGB-3D), to cultivate C. elegans in 3D for microscopic analysis. These methods allow scientists to study C. elegans biology in conditions that are more reflective of the environments they encounter in nature. These can help us to understand the overlying evolutionary relevance of the physiology and behavior of C. elegans we observe in the laboratory.
The study of the nematode Caenorhabditis elegans in the laboratory has led to seminal discoveries in the field of biology over the last five decades1. C. elegans was the first multicellular organism to have its genome sequenced in 19982, and it has been invaluable in understanding the contributions of individual genes to the development, physiology, and behavior of a whole organism. Scientists now are looking to further understand how these genes may contribute to the survival and reproductive fitness of organisms in their natural environments, asking questions about ecology and evolution at the genetic level3-5.
C. elegans once again can provide an excellent system to answer these questions. However, little is known about C. elegans biology in natural nematode habitats, and there are no current methods to simulate controlled natural conditions of C. elegans in the laboratory. In the lab, C. elegans is cultivated on the surface of agar plates seeded with E. coli bacteria6. In nature, however, C. elegans and related nematodes can be found sparsely inhabiting soils throughout the globe, but they are specifically found thriving in rotting fruits and vegetative matter7,8. These three-dimensional (3D) complex environments are quite different from the simple 2D environments to which worms are exposed to in the laboratory.
To begin to answer questions about the biology of nematodes in a more natural 3D setting, we have designed a 3D habitat for laboratory cultivation of nematodes we called Nematode Growth Tube 3D or NGT-3D for short9. The goal was to design a 3D growth system that allows for comparable growth, development, and fertility to the standard 2D Nematode Growth Media (NGM) plates10. This system supports the growth of bacteria and nematodes over their entire life cycles in 3D, allows worms to move and behave freely in three dimensions, and is easy and inexpensive to manufacture and employ.
In the current study, we provide a step-by-step method to manufacture NGT-3D and evaluate worm development and fertility. In addition to assessing worm fitness in 3D, we sought to image, video, and assess worm behavior and physiology in 3D cultivation. Thus, in addition to NGT-3D, we present here an alternate method called Nematode Growth Bottle 3D or NGB-3D, for the microscopic imaging of C. elegans during 3D cultivation. This will be especially important for the study of known behaviors identified in 2D, and the identification of novel behaviors unique to 3D cultivation.
1. Prepare Solutions for NGT-3D and NGB-3D
2. Prepare Bacteria Culture for NGT-3D and NGB-3D
3. Making NGT-3D and NGB-3D (200 ml)
4. Measure Fitness of Worm Population on NGT-3D (Relative Brood Size Assay)
5. Image and Record Worm Behavior on NGB-3D
The construction of NGT-3D is a simple and straightforward protocol that results in an agar-filled test tube with small bacterial colonies spaced throughout the agar (Figure 1A). Worms can freely move through the agar matrix, finding and consuming the bacterial colonies. To confirm whether C. elegans can reproduce and grow normally in NGT-3D, we compared fertility and larval development in 3D with standard 2D NGM plates. In the relative brood size assay, adult
The laboratory cultivation of C. elegans using the classical nematode growth media plates was crucial to the hundreds of important discoveries that research in C. elegans has provided. Here, we present new methods to cultivate C. elegans in an environment that more accurately reflects their natural three-dimensional habitats. Although other methods have been used to observe C. elegans in 3D13, this is the first protocol that allows cultivation of worms in a solid 3D matrix. ...
The authors have nothing to disclose.
This work was supported by a New Investigator Grant [2014R1A1A1005553] from the National Research Foundation of Korea (NRF) to J.I.L; and a Yonsei University Future Leader Challenge Grant [2015-22-0133] to J.I.L.
Name | Company | Catalog Number | Comments |
LB broth, Miller (Luria-Bertani) | Difco | 224620 | |
Sodium chloride | DAEJUNG | 7548-4400 | 58.44 MW |
Agar, Granulated | Difco | 214530 | |
Peptone | Bacto | 211677 | |
Calcium chloride, dihydrate | Bio Basic | CD0050 | 2*H2O; 147.02 MW |
Cholesterol | Bio Basic | CD0122 | 386.67 MW |
Ethyl alcohol | B&J | RP090-1 | 99.99%; 46.07 MW |
Magnesium sulfate, anhydrous | Bio Basic | MN1988 | 120.37 MW |
Potassium phosphate, monobasic, anhydrous | Bio Basic | PB0445 | 136.09 MW |
2'-Deoxy-5-fluorouridine | Tokyo Chemical Industry | D2235 | 246.19 MW |
Potassium phosphate, dibasic, anhydrous | Bio Basic | PB0447 | 174.18 MW |
Multi-Purpose Test Tubes | Stockwell Scientific | ST.8570 | 8 ml |
Test Tube Closures | Stockwell Scientific | ST.8575 | |
Cell Culture Flask | SPL Lifescience | 70125 | 25 cm2 |
Research Stereo Microscope | Nikon | SMZ18 | |
High-Definition Color Camera Head | Nikon | DS-Fi2 | |
PC-Based Control Unit | Nikon | DS-U3 | |
NIS-Elements Basic Research, Microscope Imaging Software | Nikon | MQS32000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved