Method Article
ここに提供いたします詳しいプロトコル抗生物質の経口投与のマウス、糞便、DNA の抽出および糞便細菌の数量のコレクション qPCR による。
腸内細菌は、人間の健康に中央影響を及ぼします。微生物 dysbiosis は炎症性腸疾患、喘息、関節炎などの多くの一般的な immunopathologies に関連付けられます。したがって、内細菌叢と免疫系のクロストーク機構の解明は、非常に重要です。病原体のクリアランスを支援しながら、抗菌薬の投与は、サイズと人間の健康に影響を持つことができる腸の細菌群集組成の急激な変化を誘導します。マウスで抗生物質による治療は影響と抗生物質の治療を受けた患者から人間の微生物叢の長期的変化を繰り返すし、微生物群集の変化と免疫機能のメカニズムのリンクの調査を実行できます。マウスの抗生物質治療のいくつかの方法が記載されている間それらのいくつかは重度の脱水とデータの解釈を複雑に減量を誘発します。ここでは、主要な減量を引き起こすことがなくマウスの長期の治療に使用できる経口抗菌薬投与の 2 つのプロトコルを提供します。これらのプロトコルは細菌をグラム陽性およびグラム陰性の両方を対象の抗生物質の組み合わせを使用していずれかの自由水を飲むのか、経口投与によるを提供することができます。また、抗生物質による治療の有効性を検証する使用ことができます qPCR による糞便における微生物密度の定量法について述べる.これらのアプローチの組み合わせは、腸内細菌叢の操作とマウスで抗生物質による治療の効果に関する研究の信頼性の高い手法を提供します。
哺乳類の消化管粘膜は、ホストと相利共生の関係を確立する微生物の非常に複雑な混合物によって植民地化されたユニークな環境です。腸の粘膜の防衛システムでは、上皮層とその数と多様性を維持しながら腸内共生生物を制限する免疫細胞の茄多を装備されています。逆に、共生生物が完全に機能する免疫システムの開発のため必要です。ホストと共生細菌間の相互作用は通常有益なその調節不全免疫微生物叢のクロストークは、慢性の炎症性疾患は、このような asinflammatory 腸の開発を支持できることますます明確になっています。疾患、関節リウマチや喘息1,2。
腸内細菌は様々 な要因によって変更できますが、おそらく最も抜本的な変更は、サイズと細菌群集3,4の組成を変更する深刻な抗生物質による治療によって引き起こされます。感染症を治療するための抗生物質の効果は疑わしい、ヒトにおける抗菌薬曝露による微生物叢変化は健康に有害な影響につながることができる免疫防御も変更できます。例えば、ヒトの抗生物質治療は、クロストリジウム ・ ディフィシルのリスクの増加にリンクされている-下痢、喘息、癌3の特定の種類を誘発します。マウスで抗生物質による治療は、影響と抗生物質治療患者の腸地域の長期的な変化を繰り返すし、微生物群集の変化と免疫機能のメカニズムのリンクの調査をなっています。しかし、いくつかのレポートは、マウスを控えるその不快な味5,6によると思われる水を飲むように飲料水広告自由に抗生剤の投与が非常に顕著な体重減少の結果、示されています。したがって、これらのモデルで重度の脱水症の抗生物質内服を併用が免疫細胞機能の抗生物質による治療の効果を識別することを目指して実験の解釈を複雑になります。
サイズと腸内コンパートメント7における微生物群集の組成を探索するいくつかのアプローチを使用できます。次世代シーケンス テクノロジーはしかし、これらのメソッドは比較的高価なこの問題は8、非常に貴重なデータを提供しているし、データの解釈の専門家情報の解析を必要とします。その一方で、伝統的な微生物培養菌種の検出を許可する彼らは低感度を持っている、共生細菌 (特に嫌気性菌) の大部分は非常に困難または不可能で育成するには現在利用可能なメソッドの8。総微生物負荷の高速かつ信頼性の高いカルチャに依存しない測定を提供するよう、定量化と糞便の細菌種の同定のますますの量的なポリメラーゼの連鎖反応 (qPCR) 技術を使用されています。したがって、qPCR 法は年齢または炎症性腸疾患9,10を含むいくつかの疾患の進行に関連付けられた microbiota の変化の研究に有用証明しました。これに伴い、qPCR メソッドは、糞便の細菌負荷と細菌叢構成10、11,12(抗生物質を含む) さまざまな治療の効果を検証するための高速かつコスト効果の高いアプローチを提供します。
ここでは、qPCR によるマウス、糞便検体の採取、DNA 抽出、基準の作成と糞便中の細菌の定量化に経口抗生物質投与の 2 つの異なるプロトコルの詳細なステップのアカウントを提案します。これらのプロトコルは、マウスの腸内細菌叢を操作し、腸管の恒常性と病で抗生物質による治療の効果の研究の信頼性の高い方法を提供します。
ここで説明した実験は、6-8 週間特定病原体無料 (SPF) 施設で維持される古い野生型 (C57BL6/J) マウスを使用して行った。すべての動物実験は、College ロンドン王のとフランシス Crick 研究所動物福祉と倫理的なレビュー体とイギリス内務省によって承認されました。任意の動物の手順を開始する前に、適切なアクセス許可がローカルの機関を通じて得られることを確認します。
1. 抗生剤の投与
注: 抗生物質治療の 2 つの代替方法があります: 経口 (ステップ 1.1)、飲料水 (ステップ 1.2) 経由で抗生剤の投与。
2. 糞便スツール、回腸のコンテンツ、および回腸壁からの収集
3. qPCR による腸内細菌叢の定量化
注: この手順を含む標準 (ステップ 3.1) の生成と qPCR セットアップ標準と糞便のサンプル (ステップ 3.2) のためのメソッド
ここでマウスの経口抗生物質による治療の 2 つの代わりとなる議定書を提供します。図 1は、経口 (赤) または飲料水 (青) でも、連続 10 日間の抗生物質を投与したマウスの体重 (それぞれの動物の元のベース ライン重量に関連) の割合を示します。顕著な体重減少が見つかりません抗生物質を受信マウスの経口投与による。しかし、マウスは、飲料水の抗生物質自由で扱われている、彼らは体重 (~ 10%) 抗菌薬投与の最初の数日以内、通常体重の増加はその後 (図 1) を回復します。それにもかかわらず、周りで飲料水の抗生物質を受信マウスの 5-10% に達することができる > 20% 減量、治療の最初の週の内で彼らが安楽死させた場合。
糞便中の細菌の定量化には、qPCR (ステップ 3.2.7) から得られた CT値対 (3.2.2 のステップで計算される) として標準のコピー数のログをプロットすることによって得られる十分な標準的な曲線が必要です。図 2 aは R2値が 0.99827、-3.09 かつ効率の斜面の標準曲線のパフォーマンス基準を満たしている標準曲線から代表的な例を示しています ((-1 + 110% の 10^(-1/slope))*100)。0.99 と PCR 効率 90 ~ 110% の範囲内での R の2 つの値が優先されます。線形範囲内回帰分析により、糞便内 16S rDNA の豊かさの定量化。図 2 bは、糞便スツール、SI 量と SI 壁の 16S rDNA のコピーの数を示しています。図 2 bに 16S rDNA のコピー/g 糞便スツールと si 含有量の糞便サンプルのデータが表示されます。SI 壁データは 16S rDNA コピー (開始材料の量が小さすぎるため、正確な重量を得る)、SI の壁の 3 cm から回復した細菌から得られた数の合計として表示されます。
糞便中の細菌の密度に及ぼす抗生物質の影響を評価するマウスを施した抗生物質経口投与による毎日 10 日間 (1 に 10 日間) (0 日目) 前に便を採取したと抗生物質による治療 (中に別の時点で日 5、10)、7 日 (1 日 17; 抗生物質投与を停止した後、図 3 a)。抗生物質による治療が 16S rDNA のコピー/日 5 と 10、1 週間後 (前処理に匹敵する) 通常のレベルに回復した糞便中の細菌の密度間に検出された糞便の g 数の強い減少を誘導する図 3Bのように、抗菌薬投与 (17 日目) が停止されました。
図 1: 抗生物質の管理。マウス経口 (赤) または連続 10 日間の飲用水 (青) の抗生物質を受信しました。プロットは、抗生物質投与 (0 日) 前に、の元の重量を基準にして実験の全期間にわたってマウスの重量を示しています。データは、平均 ± SEM. として表示されますこの図の拡大版を表示するのにはここをクリックしてください。
図 2: 標準および糞便の 16S rRNA 遺伝子 qPCR 増幅します。(A) 標準曲線記述子の標準曲線の線形回帰。(B) 糞便サンプルから遺伝子組成の計算。データは、平均 ± SEM. として表示されますこの図の拡大版を表示するのにはここをクリックしてください。
図 3: 糞便細菌抗生物質治療中です。経口 (Ab) とで描かれているサンプル コレクションによる抗生物質投与スケジュールの (A) 回路図 *。(B) 16S rDNA 指定された日に採取したマウスから糞便での糞便のグラムあたりのコピーします。データは、平均 ± SEM. として表示されますこの図の拡大版を表示するのにはここをクリックしてください。
試薬 | ボリューム | |
DNA | 8 Μ L | |
バッファー 10 X | 2 Μ L | |
dNTPs (10 mM) | 0.4 Μ L | |
真正細菌 - F プライマー (10 mM) | 1 Μ L | |
真正細菌 - R プライマー (10 mM) | 1 Μ L | |
Taq Polimerase | 0.2 Μ L | |
H2O | 7.4 Μ L | |
総容積 | 20 Μ L | |
プライマー シーケンス | ||
真正細菌 - F プライマー | 5 ' 3' ACTCCTACGGGAGGCAGCAGT | |
真正細菌 - R プライマー | 5 ' 3' ATTACCGCGGCTGCTGGC | |
サイクリング条件 | ||
温度 | 時間 | サイクル |
94 ° C | 5 分 | 1 x |
94 ° C | 30 s | 30 倍 |
60 ° C | 30 s | 30 倍 |
72 ° C | 1 分 | 30 倍 |
72 ° C | 5 分 | 1 x |
4 ° C | ∞ | 1 x |
表 1: PCR 試薬及び条件。このテーブルは、試薬と qPCR 法で使用する標準の生成のための細菌文化からの 16S rRNA 遺伝子を増幅する PCR サイクリング条件を提供します。プライマー シーケンスが Kruglovらによって初めて公開されました。13。
試薬 | ボリューム |
SYBR グリーン マスター ミックス (2 x) | 17.5 Μ L |
真正細菌 - F プライマー (10 mM) | 0.7 Μ L |
真正細菌 - R プライマー (10 mM) | 0.7 Μ L |
H2O | 11.1 Μ L |
表 2: qPCR マスター ミックス。(最終巻 35 μ L) を示されているボリュームは、qPCR 384 ウェル プレート (5 μ L 分注エラーのための余分のための会計) で 3 通 (各 10 μ L) 上で実行する 1 つのサンプルです。量は、分析するサンプルの数によるとスケール アップがあります。
ここで提供実験プロトコル抗生物質の経口投与のマウスおよび糞便細菌の定量化する qPCR による。抗生物質の組み合わせは、両方のグラム陽性およびグラム陰性の細菌、細菌の完全なスペクトルに対する殺菌活性を提供するこのプロトコル (アンピシリン、ゲンタマイシン、ネオマイシン、メトロニダゾール バンコマイシンを含む) ターゲットで使用。糞便細菌が大幅減少経口と飲料水の抗生剤の投与5,6,12をロードします。また、どちらの治療法があるマウスの表現型に大きな影響を与える減らされた脾臓のサイズ拡大盲腸など無菌マウスの典型的ないくつかの特徴を開発する際経口法より労働集約的、多分に不快感を引き起こして、抗生物質の投与が必要です特定抗菌薬投与法の選択のおそらく、実験の長さに依存可能性があります、長期的に動物。
飲料水の抗生剤の投与、脱水からマウスを保つために重要な要因は時に抗生物質の混合甘味料添加による注意を取られなければなりません。いくつかのグループは、飲料水 (甘味料添加) なしで抗生剤の投与はすべてマウス実験5の最初の数日以内に最初の体重の 20% 以上を失うと非常に厳しい、急激な体重減少につながる方法を示しています。,6プロトコル、サッカリン系甘味料の使用マスクの水と抗生物質投与後の最初の数日間の重量を失ったマウスで抗生物質の味に十分であるように見えたがその (後すぐにその重みを回復した。図 1)。それにもかかわらず、私たちの実験ではマウスの 5-10% まだ到達の人間エンドポイント > ベースラインの 20% の損失の体重、安楽死に必要な。我々 はまたマウスの脱水を防ぐために完全に失敗したスクラロース ベースの甘味料をテスト (失われたマウスの 100% > 重量の 20%) 一方、他の著者は、甘味料のアスパルテーム ベース5,6と同様の障害を公開しています。これに加え、年齢、遺伝的背景、実験用マウスの一般的な健康状態がある、抗生物質治療中に減量と動物の福利に影響可能性があります彼らとします。したがって、マウス重量および全身状態を注意深く監視は経口抗菌薬投与の最初の 2 週間の間に毎日実行する必要があります。
qPCR メソッドは、糞便の 16S rRNA の定量化のための高速かつコスト効率の高いアプローチを提供します。ただし、いくつかの制限に配慮すべきこの技術を含む: 私) 信頼性の高い高品質規格の要件ii) 設計と qPCR のプライマーの効率iii) 微生物が 16S rRNA 遺伝子のコピー数があるという事実、従って遺伝子コピー可能性があります直接等しくないセル数15。それにもかかわらず、qPCR糞便試料の迅速な分析を可能にする堅牢な敏感な方法です。このメソッドは、便利詳細こことして様々 な治療法の (抗生物質を含む) の糞便細菌負荷の効果を迅速に検証できます。さらに、合計16 の定量化のプロトコルを提供して我々 が rRNA、このメソッドことができます簡単に適応する (特異的プライマー16の設計) によってこのように量的の両方を提供する個々 の細菌種の同定を有効にしてマイクロバイ サイズと組成に関する定性的情報。
要約すると、マウスの糞便細菌の抗生物質による変化を定量化する qPCR 法経口抗生物質による治療の 2 つのプロトコルを実施しています。彼らがマウスの腸内細菌叢を操作し、効果の研究、費用効果の高い迅速かつ信頼性の高いツールとして役立つかもしれないが、これらのプロトコルは、さらに最適化し、個々 の実験のニーズによると他の方法と組み合わせることができます、腸内の恒常性と病抗生物質による治療。
著者が明らかに何もありません。
この作品は、英国の医学研究評議会 (グラント P.B. 氏/L008157/1); によって賄われていたR. j. に支えられたマリー キュリー Intra-European フェローシップ (H2020-MSCA-IF-2015-703639);P.M.B。 英国医学研究評議会とキングス カレッジ ロンドン博士研修パートナーシップ ナカオ (氏/N013700/1) から就労によって支えられました。
Name | Company | Catalog Number | Comments |
Ampicillin sodium salt | Sigma-Aldrich (Merck) | A9518 | |
Neomycnin trisulfate salt hydrate | Sigma-Aldrich (Merck) | N1876 | |
Metronidazole | Sigma-Aldrich (Merck) | M3761 | |
Vancomycin hydrochloride | Sigma-Aldrich (Merck) | V2002 | |
Gentamicin sulfate salt | Sigma-Aldrich (Merck) | G3632 | |
Tryptone | Sigma-Aldrich (Merck) | T7293 | |
Yeast Extract | Sigma-Aldrich (Merck) | Y1625 | |
NaCL | Sigma-Aldrich (Merck) | S7653 | |
Sweetener Sweet'n Low | Sweet'N Low | Available in the UK from Amazon.co.uk | |
X-Gal (5-brom-4-chloro-3-indoyl B-D-galactopyranoside) | Fisher scientific | 10234923 | |
Phosphate Buffered Saline | Thermo Fisher Scientific (Gibco) | 10010023 | |
Ultrapure Agarose | Thermo Fisher Scientific (Invitrogen) | 16500500 | |
RT-PCR grade water | Thermo Fisher Scientific (Invitrogen) | AM9935 | |
Phusion High-Fidelity DNA Polymerase | New England BioLabs | M0530 | |
Deoxynucleotide (dNTP) Solution Mix | New England BioLabs | N0447 | |
iTaq Universal SYBR Green Supermix | Bio-Rad | 1725124 | with ROX |
TOPO TA cloningTM for sequencing | Thermo Fisher Scientific (Invitrogen) | 450030 | |
QIAamp fast DNA Stool mini kit | Qiagen | 51604 | |
QIAprep spin Miniprep kit | Qiagen | 27106 | |
QIAquick gel extraction kit | Qiagen | 28704 | |
Syringe filter 0.45 µm | Fisher scientific | 10460031 | |
Swann-MortonTM Carbon steel sterile scalpel blades | Fisher scientific | 11792724 | |
Syringe (1 mL) | BD Plastipak | 303172 | |
Syringe (20 mL) | BD Plastipak | 300613 | |
1.5 mL Crystal clear microcentriguge tube | StarLab | E1415-1500 | |
2 mL Ultra high recovery microcentrifuge tube | StarLab | I1420-2600 | |
Oral dosing needles 20 G x 38 mm curved (pk/3) | Vet-Tech | DE008A | |
Sterilin petri dish 50 mm | Scientific Laboratory Supplies | PET2020 | |
Absolute qPCR plate seals | Thermo Fisher Scientific | AB1170 | |
MicroAmpTM optical 384-well plate | Thermo Fisher Scientific (Applied Biosystems) | 4309849 | |
ViiA7TM 7 real-time PCR system with 384-well block | Thermo Fisher Scientific (Applied Biosystems) | 4453536 | |
Spectrophotometer (Nanodrop 1000) | Thermo Fisher Scientific | ND-1000 | |
Labnet Prism microcentrifuge | Labnet | C2500 | |
MultiGene Optimax Thermal cycler | Labnet | TC9610 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved