JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

円形RNA(circRNA)は、タンパク質間の転写調節および媒介相互作用に役割を有し得る非コードRNAである。circRNAシーケンシングライブラリの構築のための異なるパラメータの評価に続いて、RNase R前処理を用いた立ち往生した全RNAライブラリ調製を利用してプロトコルをコンパイルし、ここで提示する。

要約

円形RNA(circRNA)は、マイクロRNA(miRNA)調節、タンパク質間相互作用のメディエーション、親遺伝子転写の調節などの機能に関与する非コードRNAのクラスです。古典的な次世代RNAシーケンシング(RNA-seq)では、circRNAは通常、mRNAライブラリの構築中にポリA選択の結果として見落とされるか、または非常に低い存在量で発見され、したがって分離および検出することは困難です。ここで、circRNAライブラリ構築プロトコルは、ライブラリ調製キット、前処理オプションおよび各種全RNA入力量を比較することによって最適化された。RNase R前処理の有無にかかわらず、市販の2つの全トランストランスクリプトームライブラリ調製キット、および可変量の合計RNA入力(1〜4μg)を使用して、試験した。最後に、複数の組織タイプ;肝臓、肺、リンパ節、および膵臓を含む;だけでなく、複数の脳領域;小脳、下頭頂葉、中側頭回、後頭皮質、および上頭前頭回を含む;組織型全体にわたるcircRNAの存在量を評価するために比較した。6つの異なるcircRNA検出ツール(find_circ、CIRI、マッププライス、ナイフ、DCC、およびCIRCexplorer)を用いた生成されたRNA-seqデータの分析により、RNase R前処理と4μg RNA入力を備えた孤立した合計RNAライブラリ調製キットが最適であることを明らかにした。circRNA の最大相対数を識別するためのメソッド。以前の知見と一致して、circRNAの最も高い濃縮は、他の組織タイプと比較して脳組織で観察された。

概要

円形RNA(CircRNA)は、真核生物転写1、2、3における広範な発現を考えると注目を集めている内因性非符号化RNAである。それらは、互いに逆スプライスを取り除いたときに形成され、したがって、最初はアーティファクト4、5をスプライシングしていると考えられていました。しかしながら、最近の研究では、circRNAが細胞型、組織、および発達段階特異的発現3、6を示し、進化的に保存されている2、3が実証されている。さらに、それらは、タンパク質間相互作用7のメディエーションに関与している7、マイクロRNA(miRNA)結合3、8、9、10、および親遺伝子転写11の調節である。

古典的なRNAシーケンシング(RNA-seq)では、mRNAのポリA選択の結果としてライブラリの構築中にcircRNAが完全に失われたり、その低い存在量を考えると分離が困難な場合があります。しかしながら、最近のcircRNA特性評価研究は、CircRNA2、12、13を濃縮するためにRNase Rを用いた前処理工程を組み込んだ。RNase Rは、円形RNA構造の後ろに残して、線形RNAを消化するエキボリボヌクレアーゼです。CircRNAエンリッチメントプロトコルは、RNase R前処理ステップの有無にかかわらず、市販されている2つの全トランストランスクリプトームライブラリ構築キットからデータを生成および比較し、さまざまな量の合計RNA入力(1〜4μg)を使用することによって最適化されました。最適化されたプロトコルは、次に5つの異なる脳領域(小脳[BC]、下頭頭葉[IP]、中側頭蓋[MG]、後頭前皮質[OC]および上前頭回[SF])および4つの他の組織タイプ(肝臓[LV]、肺[LU]、リンパ節[LN]および膵臓[PA])にわたるcircRNAの豊富さを評価するために使用された。RNA-seqライブラリをペアにエンドシーケンスし、データを6つの異なるcircRNA予測アルゴリズムを使用して分析した:find_circ 3、CIRI14、マッププライス15、KNIFE16、DCC17、およびCIRCexplorer18。我々の分析に基づいて、RNase R前処理および4μgの総入力RNAとの孤立した総RNAライブラリー調製キットを使用した場合、最も多くのユニークなcircRNAが検出されました。ここでは、最適化されたプロトコルについて説明します。以前に報告された19、20として、他の組織タイプと比較して脳内で最も高い濃縮が観察された。

プロトコル

本研究は、人間の福祉に関するすべての制度、国内、国際的なガイドラインに準拠して行われています。脳組織は、AZのサンシティにあるバナーサン健康研究所脳体寄付プログラムから得られました。脳と身体の寄付プログラムの運営は、西部機関審査委員会(WIRBプロトコル#20120821)によって承認されています。すべてのサブジェクトまたはその法的代理人がインフォームド コンセントに署名しました。市販の(非脳)生体検体はプロテオゲネックスから購入した。

1. RNase R治療

注:以下の工程では、反応体積は50μLの総体積に調整される。これは、RNA クリーンアップおよびコンセントレータ キットで使用される最小サンプル量です (材料表を参照)。さらに、ここで説明する最適化されたプロトコルは、合計 RNA の 4 μg の入力量に対する場合です。入力量 >4 μg には、RNase R 処理のインキュベーション時間を長くすることをお勧めします。

  1. 全RNAをマイクロ遠心管内の39°L RNaseフリー水中で4μgに希釈し、ピペットでよく混ぜます。
  2. 別のチューブで、RNase Rを1x RNase R反応バッファーで2 U/μLの作動濃度に希釈します。即時使用のために十分に行います。
  3. ピペット39μLの全RNAと10x RNase R反応バッファーの5μLを1.5mL反応管に入れ、ピペットによってよく混合する(50°Lは全反応量となる)。次に、RNase R(2 U/μL)を6μL加えます。
  4. ピペットを完全な反応量(50°L)に調整し、10回上下にピペットをピペットでよく混ぜます。
  5. チューブを37°水浴に10分間置き、反応量が水浴に浸されていることを確認してください。
  6. チューブを氷の上に置き、すぐにRNAのクリーンアップと濃度(セクション2)に進みます。

2. RNA クリーンアップおよびコンセントレータ キットを使用した RNA の精製

注:高品質RNA(RIN>8、DV200>80%)を使用する場合、RNase R処理によりRNAの約60%が失われる可能性があります。4μgの入力を使用して、処理されたRNAの2〜2.5μgがセクション1の後に残っていると推定される。

  1. 開始する前に、100%エタノールの48 mLを緩衝濃縮物に加えてRNA洗浄バッファーを準備し、ピペットでよく混合します。精製柱を回収管に配置し(「材料表」を参照)、チューブラックに配置します。
    注:次のすべての手順に対して、次の遠心分離設定を使用します。DNase I治療が既に行われている場合は、この段階でDNase I治療をスキップしてください。
  2. RNase R処理サンプルに2巻のRNA結合バッファーを追加し、ピペットによってよく混合します(総体積:150°L)。
  3. RNA結合バッファーとRNase R処理サンプル混合物に100%エタノールの1容量を加え、ピペットによってよく混合します(総体積:300°L)。
  4. ボリューム全体を列に転送し、30 s. 破棄フローの列を遠心分離します。
  5. 400 μLのRNA準備バッファをカラムに直接追加し、カラムを30sの遠心分離し、流れを破棄します。
  6. 700 μLのRNA洗浄バッファをカラムに直接追加し、カラムを30sの遠心分離し、流れを廃棄します。
  7. 400 μLのRNA洗浄バッファをカラムに直接追加し、カラムを2分間遠心分離し、カラムを新鮮なRNaseフリーの1.5 mLチューブに転送します。
  8. カラムフィルターのすぐ上にあるピペットチップを保持し、カラムフィルターのみに水が着陸するようにすることで、RNaseフリー水を11°L直接カラムに追加します。
  9. カラムを室温で1分間インキュベートし、遠心分離機を1分間インキュベートします。
  10. カラムを廃棄する前に、RNaseフリーチューブ内の流れを確認してください。溶出に成功した場合は、サンプルを-80°Cで保存するか、直ちにライブラリの準備を進めます。約10°Lの最終的な総溶出量は、ライブラリの構築に使用されます。
    注:停止点: RNA を -80 °C に -80 °C のままにしてから、ライブラリの準備を続行します。

3. circRNAライブラリ準備

注:このセクションで使用するほとんどの試薬を含むキットについては、材料表を参照してください。

  1. rRNAの枯渇と断片化
    1. 精製RNAの10μLをステップ2.10から新しい96ウェル0.3 mL PCRプレートでクリーンウェルに転送します。井戸に、5μLのrRNA結合緩衝液を加え、続いて5μL rRNA除去ミックスを加えます。軽くピペットを10回上下に混ぜます。
    2. シールプレートとインキュベートは、事前にプログラムされた予熱サーモサイカーブロックで68°Cで5分間インキュベートします。5分間のインキュベーションが完了したら、プレートをベンチに置き、室温で1分間インキュベートします。
    3. プレートからシールを取り外します。35 μL のボルテックス室温 rRNA 除去ビーズをサンプルに加えます。ピペットを45°Lに調整し、ピペットを10~20倍に上下に調整して十分に混ぜます。室温で1分間インキュベートプレート。
    4. プレートを磁気スタンドに移し、スタンドで1分間、または溶液がクリアされるまでインキュベートします。すべての上清(約45°L)を同じプレート上の新しいウェル、または新しいプレートに転送します(使用しているサンプルの数によって異なります)。
    5. RNAクリーンアップビーズ(材料表参照)をよく分散するまでボルテックスし、各サンプルに99μLのビーズを添加する。ピペットを10倍上下に混ぜます。室温でプレートを10分間インキュベートします。
    6. プレートを磁気スタンドに移し、さらに5分間、または溶液がクリアされるまでインキュベートします。井戸から上清をすべて取り除き、捨てます。
    7. プレートを磁気スタンドに残したまま、ビーズを破壊することなく、作りたての80%EtOHを200°L添加します。30sをインキュベートし、エタノールを取り出して廃棄します。合計 2 つのワッシュに対して繰り返します。
    8. 溶出バッファーの11 μLを各ウェルに加え、ピペットを10回上下に加えます。室温で2分間インキュベートし、溶液が消えるまで磁気スタンドに移します(1~5分)。
    9. 上清の8.5°Lを井戸から同じプレート上の新しい井戸または新しいプレートに移します。溶出、プライマー、フラグメントハイミックスの8.5°Lを各ウェル含有サンプルに加えます。ピペットを10回上下に切り、徹底的に混ぜます。
    10. シールプレートとインキュベートは、事前にプログラムされた予熱サーモサイカーブロックで94°Cで8分間インキュベートします。4°Cに達したらサーモサイカーから取り出し、遠心分離機を短時間で取り出します。
      注:すぐに合成ファーストストランドcDNAプロトコルに進みます。
  2. cDNAの合成
    1. 調製するサンプルごとに、9 μL ファーストストランド合成ミックスを1μLの逆転写酵素と混合します(材料表を参照)。混合物の8°Lをサンプルに加えます。ピペットを上下に6回混ぜます。
      1. シールプレートとインキュベートは、次のパラメータを使用して、事前にプログラムされた、予熱されたサーモサイカーブロック上でインキュベートする:25°C10分、15分の場合は42°C、15分で70°C、4°Cホールド。直ちに第2鎖合成に進む。
    2. 各サンプルに5μLのリサスペンションバッファを加え、その後に20°Lのセカンドストランドマーキングマスターミックスを加えます。ボリューム全体を6回上下にピペットします。
    3. シールプレートとインキュベートは、事前にプログラムされた、予熱されたサーモサイカーブロックを1時間16°Cに設定します。インキュベーションの後、サーモサイカーからプレートを取り出し、室温まで平衡化させます。
    4. ボルテックスPCR精製ビーズ(材料表参照)を使用し、サンプルの各ウェルに90μLビーズを追加します。ピペットを10回上下に切り、徹底的に混ぜます。室温で10分間インキュベートする。
    5. ビード/サンプルミックスを磁気スタンドに移し、5分間または液体が消えるまでインキュベートします。上清を取り除いて捨てる。
    6. 各サンプルに200 μLの80%EtOHを加えます。30sの室温で磁気スタンド上のサンプルをインキュベートする。1x を繰り返します。
    7. ビーズを室温で6分間乾燥させ、磁気スタンドから取り出します。
    8. リサスペンションバッファの19.5°Lでビーズを再サスペンドします。ピペットを10回上下に切り、徹底的に混ぜます。室温で2分間インキュベートし、磁気スタンドに移し、さらに1分間、または液体がクリアされるまでインキュベートする。
    9. 新しい井戸/新しいプレートに上清の17.5 μLを転送します。
      注:すぐに進まない場合、サンプルは-20°Cで最大7日間保存できます。
  3. 図書館の準備
    1. Aテーリングミックスの12.5°Lを各ウェルに加えます。ボリューム全体を上下に10回ピペットして混ぜます。
    2. 次のパラメータを使用して、事前にプログラムされた予熱されたサーモサイカーブロック上の反応を37°Cに設定してインキュベートします:30分の場合は37°、5分間は70°C、4°Cホールド。サンプルが4°Cに達したら、直ちにアダプターライゲーションに進みます。
    3. 各サンプルに2.5μLのリサスペンションバッファ、ユニークなRNAアダプタの2.5°L、およびライゲーションミックスの2.5°Lを追加します。ピペットを10倍上下に混ぜます。
    4. 事前にプログラムされた、予熱されたサーモサイカーブロック上のサンプルを30°Cで10分間インキュベートします。
    5. 各サンプルにストップライゲーションバッファを5μL加え、ピペットを上下に加え、混ぜます。
    6. 各サンプルに42μLの混合PCR精製ビーズを加え、十分に混ぜます。手順 3.2.6 ~ 3.2.10 に従いますが、リサスペンションボリュームを 52 μL に、最終溶出ボリュームを 50 μL に変更します。
    7. 手順 3.3.6 の 50 μL 溶出で PCR 精製ビード プロトコルをもう一度繰り返しますが、リサスペンションボリュームを 22 μL に、最終溶出量を 20 μL に変更します。
      注:すぐに進まない場合、サンプルは-20°Cで最大7日間保存できます。
    8. 各サンプルにPCRプライマーカクテル5μL、PCRマスターミックス25°Lを加えます。10回上下にピペットで混ぜます。次のパラメータを使用して、事前にプログラムされた予熱されたサーモサイカーブロック上の反応をインキュベートする: 98 °C 30 s;その後、10sの場合は98°C、30sでは60°、30sの場合は72°Cの8サイクル。その後、5分間72°C、その後4°ホールド。
      注:シーケンス処理に十分な量のライブラリを生成するには、PCR サイクルの総数の最適化が必要な場合があります。
    9. PCRビーズ精製のプロトコル(ステップ3.2.4~3.2.9)に従い、50μLの混合PCR精製ビーズを追加し、最終的な溶出量を30°Lの最終溶出量で32.5μLに変更します。
      注:サンプルは-20°Cで保存する必要があります。
  4. 核酸分析装置を用いた定量・品質管理
    1. テープと試薬が室温で30分間平衡化できるようにします。
    2. 2μLのライブラリをHS D1000バッファの2°Lと混合し、互換性のあるウェルプレートに追加します。
    3. 互換性のあるホイルシールでしっかりとシールし、2,000 rpmで1分間渦を密閉します。
    4. ソフトウェアプロンプトに従って、アナライザーのプレートをスピンダウンしてロードします。
      注:ライブラリのサイズは約 260 bp にする必要があります。

4. データ分析ワークフロー

  1. シーケンス RNA-seq ライブラリー (材料の表を参照)は、82 bp のペアエンド読み取りを生成します。bcl2fastq ツール (v0.2.19) を使用して、ベースコール ファイル (.bcl) の形式の生シーケンシング データを FASTQ に変換します。
  2. circRNA を検出します。
    注:アンサンブルcircRNA検出アプローチが単一検出ツール21、22を使用する場合に比べてより良いパフォーマンスを発揮するという以前に報告された証拠に基づいて、circRNA検出に複数のツールを使用することをお勧めします。ここでは、circRNAは、find_circ、CIRI、CIRCexplorer、マッププライス、ナイフ、およびDCCの6つの既存のcircRNA予測アルゴリズムを使用して同定され、各アルゴリズムに推奨されるパラメータ設定を適用しました。
    1. 開発者が提供する指示に従って、Linux ハイパフォーマンス・コンピューティング・クラスターに各 circRNA 検出アルゴリズムをダウンロードしてインストールします。
    2. 各ツールに推奨されるアライナーを使用して、参照ゲノム(GRCh37)に対してRNA-seq FASTQを位置合わせします。
    3. アライメントに従って、それぞれの推奨パラメータ設定を適用してcircRNA検出アルゴリズムを実行します。
    4. 各ツールは、検出されたcircRNAのリストを含む複数列の結果ファイルを出力し、circRNA座標とサポート読み取りの数を抽出して、各サンプル/テスト条件で検出された候補の数を定量化します。
  3. CIRI、Mapsplice、および DCC によって出力される circRNA 座標を 0 ベースの座標に変換して、他の 3 つのアルゴリズムと一致させます。
  4. 2 つ以上のサポート読み取りまたは下流の分析と比較を含む circRNA を選択します。表 1は、各サンプルに対して生成されたシーケンス読み取りの合計数と共に、この調査で評価されたすべてのパラメーターとをまとめたものです。
  5. サンプル/テスト条件ごとに、検出された circRNA の数を、そのライブラリに対して生成されたマップされた読み取りの数 (100 万件あたり) に正規化します。[代表的な結果]で詳しく説明されているように、箱ひげ図のさまざまなツール/サンプルにわたる結果を要約します。

結果

市販のユニバーサルコントロールRNA(UC)を用いて生成されたデータと、プロトコルにリボ枯渇ステップを含む2つのライブラリ調製キットを使用して、最初に評価された。分析ワークフロー (データ分析ワークフロー、セクション 4) を使用して、全体的に、Kapa データセットと比較して TruSeq データセットでより多くの circRNA が検出されました (図 1)。リボソームRNA(rRNA)の?...

ディスカッション

本研究では、2つの市販のライブラリー調製キット、前処理オプション、および入力RNA量を試験し、circRNAシーケンシングライブラリの構築のためのcircRNA濃縮プロトコルを最適化した。この研究の評価に基づいて、circRNAシーケンシングライブラリを作成する際の重要な側面と重要なステップの数が明らかです。我々の評価は、検出されたcircRNAの数の増加によって反映されるRNase R前処理の有用?...

開示事項

著者たちは何も開示する必要はない。

謝辞

アリゾナ州サンシティのバナーサン健康研究所脳体寄付プログラム(BBDP)に感謝しています。BBDPは、国立神経疾患・脳卒中研究所(U24 NS072026パーキンソン病および関連障害のための国立脳・組織資源)、国立加齢研究所(P30AG19610アリゾナアルツハイマー病コアセンター)、アリゾナ州保健サービス省(契約211002、 アリゾナ・アルツハイマー研究センター)、アリゾナ生物医学研究委員会(アリゾナ・パーキンソン病コンソーシアムに4001、0011、05-901、1001を契約)、マイケル・J。フォックスパーキンソン病研究財団27.この研究はまた、DHSとアリゾナ州(ADHS14-052688)によって支持されました。また、アンドレア・シュミット(バナー・リサーチ)とシンシア・レチュガ(TGen)の行政支援に感謝します。

資料

NameCompanyCatalog NumberComments
1,000 µL pipette tipsRaininGP-L1000F
20 µL pipette tipsRaininSR L 10F
200 µL pipette tipsRaininSR L 200F
2200 TapeStation Accessories (foil covers)Agilent Technologies5067-5154
2200 TapeStation Accessories (tips)Agilent Technologies5067-5153
Adhesive Film for MicroplatesVWR60941-064
AMPure XP Beads 450 mLBeckman CoulterA63882PCR purification
Eppendorf twin.tec 96-Well PCR PlatesVWR951020401
High Sensitivity D1000 reagentsAgilent Technologies5067-5585
High Sensitivity D1000 ScreenTapeAgilent Technologies5067-5584
HiSeq 2500 Sequencing SystemIlluminaSY-401-2501
HiSeq 3000/4000 PE Cluster KitIlluminaPE-410-1001
HiSeq 3000/4000 SBS Kit (150 cycles)IlluminaFC-410-1002
HiSeq 4000 Sequencing SystemIlluminaSY-401-4001
HiSeq PE PE Rapid Cluster Kit v2IlluminaPE-402-4002
HiSeq Rapid SBS Kit v2 (50 cycle)IlluminaFC-402-4022
Kapa Total RNA KitRocheKK8400
Molecular biology grade ethanolFisher ScientificBP28184
Qubit Assay TubesSupply Center by Thermo FischerQ32856
Qubit dsDNA High Sense Assay KitSupply Center by Thermo FischerQ32854
RNA cleanup and concentrator - 5ZymoRCC-100Contains purification columns, collection tubes
RNAClean XP beadsBeckman Coulter GenomicsRNA Cleanup beads
Rnase RLucigenRNR07250
SuperScript II Reverse Transcriptase 10,000 unitsThermoFisher (LifeTech)18064014
TapeStation 2200Agilent TechnologiesNucleic Acid analyzer
TElowEVWR10128-588
TruSeq Stranded Total RNA Library Prep KitIllumina20020596Kit used in section 3
Two-Compartment Divided TrayVWR3054-1004
UltraPure WaterSupply Center by Thermo Fischer10977-015
Universal control RNAAgilent740000

参考文献

  1. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One. 7 (2), e30733 (2012).
  2. Jeck, W. R., et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19 (2), 141-157 (2013).
  3. Memczak, S., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495 (7441), 333-338 (2013).
  4. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America. 73 (11), 3852-3856 (1976).
  5. Nigro, J. M., et al. Scrambled exons. Cell. 64 (3), 607-613 (1991).
  6. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genetics. 9 (9), e1003777 (2013).
  7. Du, W. W., et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. European Heart Journal. 38 (18), 1402-1412 (2016).
  8. Capel, B., et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73 (5), 1019-1030 (1993).
  9. Hansen, T. B., et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal. 30 (21), 4414-4422 (2011).
  10. Hansen, T. B., et al. Natural RNA circles function as efficient microRNA sponges. Nature. 495 (7441), 384-388 (2013).
  11. Li, Z., et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology. 22 (3), 256-264 (2015).
  12. Tan, W. L., et al. A landscape of circular RNA expression in the human heart. Cardiovascular Research. 113 (3), 298-309 (2016).
  13. Zhong, Z., Lv, M., Chen, J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Scientific Reports. 6, 30919 (2016).
  14. Gao, Y., Wang, J., Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology. 16, 4-014-0571-0573 (2015).
  15. Wang, K., et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research. 38 (18), e178 (2010).
  16. Szabo, L., et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biology. 16, 126-015-0690-0695 (2015).
  17. Cheng, J., Metge, F., Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 32 (7), 1094-1096 (2016).
  18. Zhang, X. O., et al. Complementary sequence-mediated exon circularization. Cell. 159 (1), 134-147 (2014).
  19. Rybak-Wolf, A., et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell. 58 (5), 870-885 (2015).
  20. Ji, P., et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Reports. 26 (12), 3444-3460 (2019).
  21. Hansen, T. B., Venø, M. T., Damgaard, C. K., Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Research. 44 (6), e58 (2016).
  22. Zeng, X., Lin, W., Guo, M., Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol. 13 (6), e1005420 (2017).
  23. Sekar, S., et al. ACValidator: a novel assembly-based approach for in silico validation of circular RNAs. bioRxiv. , (2019).
  24. Westholm, J. O., et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports. 9 (5), 1966-1980 (2014).
  25. Szabo, L., Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nature Reviews Genetics. 17 (11), 679-692 (2016).
  26. Zheng, Y., Ji, P., Chen, S., Hou, L., Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Medicine. 11 (1), 2 (2019).
  27. Beach, T. G., et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 35 (4), 354-389 (2015).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

153 RNA RNA RNase R RNA RNA

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved