JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルの目的は、半標的クロマトグラフィー質量分析法を使用して血漿中のフェノール代謝産物を検出することです。

要約

23人の高齢者のグループに、サルコペニア(加齢に伴う筋肉量の喪失)の予防のために特別に処方された機能的な食事(飲料とマフィン)が与えられました。血漿サンプルは、介入の開始時および機能性食事の摂取の30日後に採取された。フェノール化合物とその代謝産物を同定するために、タンデム質量(UPLC-MS/MS)分析と組み合わせた半標的超高速クロマトグラフィーを実施しました。血漿タンパク質をエタノールで沈殿させ、サンプルを濃縮し、UPLC-MS/MS装置に注入する前に移動相(1:1アセトニトリル:水)に再懸濁した。分離はC18 逆相カラムで行い、実験質量、同位体分布、およびフラグメントパターンを使用して化合物を同定しました。関心のある化合物を、データバンクおよび内部セミターゲットライブラリの化合物と比較した。予備的結果は、介入後に同定された主要な代謝産物がフェニル酢酸、グリシチン、3−ヒドロキシフェニル吉草酸、およびゴミシンM2であることを示した。

概要

サルコペニアは、高齢者集団における筋肉の加速的な喪失に関連する進行性の骨格障害である。この状態は転倒のリスクを高め、日常生活の限られた活動につながります。サルコペニアは、65歳以上の人の約5%〜10%、80歳以上の人の約50%に存在します1。サルコペニアの治療には特定の薬は承認されていないため、身体活動とバランスの取れた食事による予防が重要です1,2。乳製品タンパク質と必須アミノ酸が豊富に配合された特別に処方された食品による栄養介入は、サルコペニアの予防に肯定的な結果を示しています2。他の研究では、著者らはビタミンEやイソフラボンなどのビタミンや抗酸化物質を食事に含め、腰と腰の筋肉増加の利点を高めています3

ブロシムムアリカストラム Sw.(ラモン)は、メキシコの熱帯地域で育つ木です。それはその高い栄養価のためにマヤの文化によって消費されてきました4。それはタンパク質、繊維、ミネラル、およびクロロゲン酸などのフェノール系酸化防止剤の良い供給源です5。粉末に粉砕してベーキング製品に使用したり、飲料に消費したりすることができるため、最近の研究では、栄養価を向上させるためにラモン種子粉(RSF)をさまざまな食品に組み込むことが評価されています。RSFを補ったカプチーノ風味の飲料が処方され、食物繊維が多く、1サービングあたり6g以上のタンパク質を含み、消費者に高く評価されました。したがって、それは特別な食事要件を満たすための潜在的な代替手段と考えられていました6。追跡調査では、RSFはマフィンとタンパク質、食物繊維、微量栄養素、フェノール系抗酸化物質が豊富な新しい飲料を処方するためにも使用されました。マフィンと飲料は、30日間、1日2回両方の製品を消費した高齢者のための食事介入に使用された。この期間の後、参加者の栄養状態およびサルコペニック状態は改善し、血漿の総フェノール含有量は増加した7。しかし、血漿中の全フェノール化合物の測定は分光光度法によって行われたため、吸収された実際のフェノール化合物の同定は不可能であった。さらに、この方法はフェノール化合物に完全に特有のものではないため、過大評価が起こる可能性があります8

これらの抗酸化物質が豊富な食品の摂取後に吸収されるフェノール化合物の同定および定量化は困難な作業であるが、これらの植物化学物質の生物学的活性を実証するために必要である。ほとんどのフェノール化合物の生物学的利用能は低いです;それらの5%未満がプラズマ中の構造変換なしで見つけることができます。フェノール化合物は、メチル化、スルホン化、グルクロン酸抱合などのいくつかの生体内変換を受け、腸細胞および肝細胞によって行われる9。フェノール化合物はまた、微生物叢によって細菌の異化物に生体内変換され、血漿に吸収された後、体内で有益な効果を発揮する可能性がある10。例えば、フェニル酢酸は、フラボノイドおよびオリゴメリックプロアントシアニジンの細菌形質転換の産物であり、クランベリー摂取後の尿路における細菌(大腸菌)接着の最大40%を阻害することができる11

天然に存在するフェノール化合物の構造的多様性は、それらの代謝産物の多様性およびそれらの低いバイオアベイラビリティーに加えて、血漿中でのそれらの同定をさらに困難にする。核磁気共鳴(NMR)やタンデム質量分析(MS/MS)などの分光分析プラットフォームを使用したメタボロミクスプロファイリングは、おそらくこの目標を達成するための最良のアプローチです。残念ながら、この機器は簡単にはアクセスできず、分析プロトコルの開発はまだ限られています12。いくつかの研究では、メタボロミクス研究における質量スペクトルの複雑さを軽減するための戦略として、分離システム(液体クロマトグラフィーなど)と組み合わせたMS / MSが報告されています。近年の超高速液体クロマトグラフィー(UPLC)分離法の導入により、従来の高速液体プロトコルと比較して分析時間が短縮され、分解能と感度が向上したため、UPLC-MS/MSシステムは分析メタボロミクスコミュニティによって急速に広く受け入れられています13。このようにして、いくつかの研究では、フェノール代謝産物を調査し、カフェ酸、ケルセチン、フェルラ酸からのグルクロン酸誘導体、ならびにクランベリー摂取後の個体の血漿中のシリンギー酸およびバニリン酸からのスルホン化誘導体を検出した14。以前のプロトコールは、血漿などの生体液中のフェノール化合物およびフェノール代謝産物を見出すことを意図していた。これらのプロトコールは、UV-vis検出器に結合された高速液体クロマトグラフィー(HPLC)による同定および定量に基づいていた15。それにもかかわらず、そのようなプロトコルは、絶対的な識別と正確な定量化を評価するために本物の標準の使用を必要とします。幅広い研究により、生体液中の最も一般的な代謝産物(スルホン化、グルクロン酸抱合型、メチル化形態)がUPLC-MSおよびUPLC-MS/MSによって同定されている。しかし、細菌代謝産物の大部分は、完全な情報を含むデータベースがないために報告されていません16。代謝産物の同定は、代謝産物標準のコストおよび商業的入手可能性によって複雑になる。したがって、最良の戦略は、分子特徴情報(m / z、モノアイソトピック正確質量、同位体分布、および断片化パターン)を使用して化学的同一性を決定し、ポリフェノールリッチトの消費後に生体液中で同定されたポリフェノール代謝産物を含む自由に利用可能なオンラインデータベースと比較する非標的または半標的MS / MS代謝産物分析であり得る12.フェノール化合物とその代謝産物の同定のためのUPLC-MS/MS研究で使用される最も重要なデータベースは、ヒトメタボロームデータベース(HMDB)、LipidBlast Library、METLINライブラリ、およびPubChem、ChemSpider、Phenol Explorerなどの他の補完的なデータベースです17

本研究では、RSF含有マフィンおよび飲料消費試験に関与する高齢者群の血漿サンプルを分析するために、セミターゲットUPLC-MS/MS法を開発しました7。血漿代謝産物のさまざまな無料のオンラインデータベースからのデータが収集され、専門のデータベースに統合されました。このデータベースは、30日間の栄養介入の前後に5つの血漿サンプル中のポリフェノール代謝産物を同定するために、装置ソフトウェアによって自動的にアクセスすることができる。これは、サルコペニアの予防のために設計された特別に処方された機能性食品から吸収される主なフェノール化合物、またはその代謝産物を特定するために行われます。

Access restricted. Please log in or start a trial to view this content.

プロトコル

このプロトコルで使用された血漿サンプルは、すべての倫理ガイドラインに従って以前の研究で収集され、シウダーフアレス大学の制度倫理および生命倫理委員会(CIEB-2018-1-37)によって承認されました。UPLC-MS/MSによる血漿中のフェノール化合物および代謝産物の抽出および同定のための完全なプロトコルは、 図1に示されている。

figure-protocol-293
図1:半標的UPLC-MS/MS法による血漿中のフェノール化合物および代謝産物の抽出および同定の概略図。 この図の拡大版を表示するには、ここをクリックしてください。

1. サンプル調製

  1. 分析まで血漿サンプルを-80°Cで保存する。
  2. プラズマサンプルを室温で15分間解凍する。
    注:サンプルを37°Cの水浴に入れて、プロセスを加速することができます(5分)。
  3. 200 μLの血漿サンプルを2 mLマイクロチューブに入れ、1,000 μLの純粋なエタノールと混合する。プラズマサンプルを30秒間渦巻きます。
    注:血漿サンプルを扱うときは、常に手袋を使用してください。
  4. サンプルを 6,580 x g で 5 分間遠心分離します。遠心分離後、マイクロピペットまたはパスツールピペットで上清を収集し、新しいマイクロチューブに入れます。上清を4°Cで保存する。
  5. 前のステップのペレットを1,000 μLの100%エタノールと混合し、ボルテックスで30秒間、次いで6,580 x g で5分間遠心分離する。
    注:ペレットは強く充填されており、サンプルと純粋なエタノールとの接触を確実にするためによく再懸濁する必要があります。ペレットをエタノールで洗い流すためにマイクロピペットを使用することが推奨される。
  6. 遠心分離後、上清を収集し、ステップ1.4から以前に得られた上清と混合する。2mLのマイクロチューブに入れた。
  7. 135psiで純窒素(99.997%)を使用してサンプルからエタノールを除去します。サンプルの損失を防ぐために、針をマイクロチューブの上部から1cm離し、サンプルが乾くまで洗い流してください。エタノールを蒸発させるために熱は必要ありません。
    メモ:サンプルの損失を防ぐために、窒素流量を低くする必要があります。エタノールが乾燥したら、サンプルの乾燥を確実にするために窒素流を少なくとも5分間保ちます。プロトコルはこの時点で一時停止できます。サンプルは-20°Cで保存する必要があります。 サンプルを 12 時間以上保管しないでください。
  8. 乾燥サンプルをアセトニトリル:水の混合物100 μLに50:50(v:v)の割合で再懸濁する。
  9. サンプルを 0.45 μm ナイロンシリンジメンブレンを通して HPLC バイアルマイクロインサートに直接ろ過します。
    注:バイアル内のサンプルは、分析前に-20°Cで保存することができます。サンプルを8時間以内で保管してください。ろ過直後にサンプルをUPLCシステムに注入することをお勧めします。

2. UPLC-MS/MS 解析

  1. C18 逆相カラム (50 mm x 2.1 mm; 1.8 μm) を備えた UPLC に 3 μL のサンプルを注入します。オートサンプラーの温度を 20 °C に設定し、カラム サーモスタットを 25 °C に設定します。 各サンプルを3連で注入する。
  2. 溶媒Aとして水中の0.1%(v:v)ギ酸を使用し、溶媒Bとして100%アセトニトリルを使用します。流量を0.4mL/分に設定し、グラジエントプログラムを次のように設定します:0-1分10%B、1-4分30%B、4-6分38%B、6-8分60%B、8-8.5分60%B、8.5-9分10%B(表1)。
  3. 質量分析計を負モードイオン化に設定します。窒素を340°Cで乾燥ガスとして使用し、流量は13L/minです。ネブライザーの圧力を 60 psi に設定します。キャピラリー電圧を4,000 V、フラグメンタ電圧を175 V、スキマー電圧を65 Vに設定し、衝突エネルギーを20 Vで使用します(表2)。
  4. 質量を100~1100質量対電荷比(m/z)でスキャンし、MS/MSの場合は50~1000m/zの質量をスキャンします(表2)。 データ集録を自動MS/MSモードに設定します。次の参照質量を使用します: 119.036 および 966.0007。
時間 (分)溶媒A(HPLC水中の0.1%ギ酸)溶剤B(アセトニトリル100%)
0 から 19010
1 から 47030
4 から 66238
6 から 84060
8 から 8.54060
8.5 から 99010

表1:UPLCによるフェノール化合物の分離に用いた移動相勾配。

イオン化モード
乾燥ガス窒素 340 °C、流量 13 L/分
ネブライザー圧力60 psi
キャピラリー電圧175 V
MSスキャン質量100-1100 メートル/z
MS/MSスキャン質量50-1000メートル/z

表 2: MS/MS 分析のイオン化パラメータ

3. データベース構築

  1. フェノール化合物、フェノール代謝産物、または科学文献で関心のある他の化合物を検索します。
  2. UPLCシステムに含まれているデータベース管理ソフトウェアを開きます。 ファイル|の選択新しいパーソナル・データベース複合ライブラリー (PCDL) |新しい PCDL を作成します。PCDL のタイプを選択します: LC/ms メタボロミクス。PCDL の名前を設定します。次に、[ 作成] を選択します。
  3. ツールバーで、[ PCDL ] を選択し、[ 編集を許可する] オプションを選択します。次に、「 化合物を検索 」ボタンをクリックします。
    メモ: これは新しい PCDL であるため、テーブルの結果は空になります。これは、新しい化合物がPCDLに追加されると変化します。
    1. 特殊なパーソナルデータベースの化合物ライブラリにコンパウンドを追加するには、計測器の一般ライブラリからコンパウンドをコピーします。データベース管理ソフトウェアに含まれている計測器の既存のデータベースを開きます。「 化合物を検索」ボタンをクリックします。単一検索オプションに、複合 検索 基準を入力して、目的の複合を検索します。
      注:化合物は、名前、分子式、正確な質量、および保持時間で見つけることができます。
    2. 化合物結果表で、目的の化合物を選択します。複数の化合物を選択するには、最初の化合物をクリックし、 Ctrl キーを押しながら、目的の各化合物をクリックします。次に、強調表示されたすべての化合物を右クリックし、[ PCDLに追加]を選択します。
    3. 新しいウィンドウで、特殊なパーソナル・データベース・ファイルを検索して選択します。[ 化合物が存在する場合はスペクトルを含める] ボックスに マークを付け、存在する場合は [イオン移動度情報を含める] ボックスにマークを付けます。「 追加」 ボタンをクリックします。新規ダイアログボックスで、「 はい 」を選択して、追加された新規コンパウンドをチェックします。[ いいえ ] を選択して、関心のあるコンパウンドをさらに検索し続けます。
  4. 目的の化合物が機器の一般ライブラリで利用できない場合は、新しい化合物を手動で追加します。
    1. 特殊なパーソナル・データベースを開きます。開いたら、ステップ3.3に従います。「コンパウンドを 編集」 オプションを選択します。「 新規追加」 ボタンをクリックします。
    2. ウィンドウの上部セクションで、新しいコンパウンドの情報を入力します。式、名前、IUPAC名、CAS番号、ケムスパイダーID、およびその他の識別子を入力します。
    3. 無料のオンラインライブラリ(Chemspider、PubChem、およびPhenol Explorer)で利用可能な情報を使用して、目的の新しい化合物の情報を入力します。完了したら、[ 新規として 保存]ボタンをクリックして、新しい複合情報を特殊なパーソナルデータベースに保存します。
      注:フリーライブラリから情報を追加する場合は、塩化物イオンやヨウ化物イオンが存在しない化合物情報を必ず含めてください。これは、目的の化合物の正確な質量および分子式を修飾し得る。
  5. 目的のすべての化合物でこのプロセスを繰り返して、特殊なパーソナルデータベースを完成させます。

4. データ解析

  1. 装置の定性管理ソフトウェアを使用して、サンプル中に存在するフェノール化合物およびフェノール代謝産物を同定します。
  2. サンプル ファイルを開きます。クロマトグラムパネルで、[クロマトグラムの定義]を選択し、トータルイオン クロマトグラム (TIC)、抽出されたMS(EIC)、およびMS/MSのEICを抽出します。クロマトグラムの統合オプションを選択します。
  3. コンパ ウンドを 検索パネルで、「 フォーミュラで検索」-「オプション」を選択します。新しいウィンドウで、[ 数式ソース] を選択し、[ データベース/ライブラリ] オプションを選択します。以前に作成したパーソナルデータベースを見つけて、[ 開く]をクリックします。
  4. 「フォーミュラマッチング」オプションを選択し、質量マッチング公差を 5 ppm に設定します。
    注:質量の異なる一致公差は10ppmに設定することができます。この違いは、使用する質量分析計によって異なります。
  5. 「マイナスイオン」オプションを選択し、「-H」ダイアログ・ボックスのみを選択します。「結果」オプションで、「EIC の抽出」、「クリーニングされたスペクトルの抽出」、「生のスペクトルの抽出」、および「構造を含める」ダイアログボックスにマークを付けます。
  6. 「結果フィルター」オプションを選択します。スコアが [マーク] の場合は警告し、スコア一致を 80.00% に設定します。スコアが一致しない場合は一致しないマークを付け、スコアを 75.00% に設定します。
    注: 一致/不一致のスコアは、必要に応じて低い値に変更できます。これにより、識別の精度が低下します。
  7. 「式で化合物を 検索」 をクリックして、サンプル中の目的の化合物を特定します。

Access restricted. Please log in or start a trial to view this content.

結果

血漿サンプルの半標的UPLC-MS/MS分析(ネガティブモード)によるフェノール代謝産物の同定のための段階的なプロセスを 図2に示します。まず、血漿フェノール抽出物(全血漿試料のタンパク質沈殿後に得られた)から総イオンクロマトグラム(TIC)を、装置の定性ソフトウェアを介して得た。次に、抽出したイオンクロマトグラムを用い、各シグナル(または分?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

食品または栄養補助食品の消費後に吸収される生理活性植物化学物質の同定および定量化は、これらの化合物およびそれらを含む食品の健康上の利点を実証し、理解するために極めて重要である。本研究では、高齢者向けに特別に処方された2つの食品による30日間の栄養介入後に血漿中の濃度が上昇した主要なフェノール化合物およびその代謝産物の同定のみを目的として、UPLC-MS/MS法が開発...

Access restricted. Please log in or start a trial to view this content.

開示事項

すべての著者は、利益相反がないと宣言します。

謝辞

著者らは、メキシコのCONACYT(CB-2016-01-286449)およびUACJ-PIVA(プロジェクト313-17-16および335-18-13)からの財政的支援に感謝する。OAMBは、彼の博士号の奨学金のためにCONACYTに感謝したいと思います。UACJマルチメディア制作室からの技術サポートは、誠にありがとうございます。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
AcetonitrileTediaAl1129-001LC Mass spectrometry
AutosamplerAgilent TechnologiesG4226A1290 Infinity series
C18 reverse phase columnAgilent Technologies959757-902Zorbax Eclipse plus C18 2.1x50 mm, 1.8 μm; Rapid resolution HD
CentrifugeEppendorf5452000018Mini Spin; Rotor F-45-12-11
Column compartment with thermostatAgilent TechnologiesG1316C1290 Infinity series
Diode Array Detector (UV-Vis)Agilent TechnologiesG4212B1260 Infinity series
Electrospray ionnization sourceAgilent TechnologiesG3251BDual sprayer ESI source
Formic acidJ.T. Baker0128-02Baker reagent, ACS
Mass Hunter Data AcquisitionAgilent TechnologiesG3338AA
Mass Hunter Personal Compound Datbase and Library ManagerAgilent TechnologiesG3338AA
Mass Hunter Qualitative AnalysisAgilent TechnologiesG3338AA
Microcentrifuge tubeBrandBR780546Microcentrifuge tube, 2 mL with lid
Pure ethanolSigma-AldrichE7023-1L200 proof, for molecular biology
Q-TOF LC/MSAgilent TechnologiesG6530B6530 Accurate Mass
Quaternary pumpAgilent TechnologiesG4204A1290 Infinity series
Syringe filterThermo Scientific44514-NN17 mm, 0.45 μm, nylon membrane
ThermostatAgilent TechnologiesG1330B1290 Infinity series
VialAgilent Technologies8010-0199Amber, PFTE red silicone 2 mL with screw top and blue caps
Vial insertAgilent Technologies5183-2089Vial insert 200 μL for 2mL standard opening, conical
WaterTediaWL2212-001LC Mass spectrometry

参考文献

  1. Morley, J. E., Anker, S. D., von Haehling, S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. Journal of Cachexia, Sarcopenia and Muscle. 5 (4), 253-259 (2014).
  2. Cruz-Jentoft, A. J., Sayer, A. A. Sarcopenia. The Lancet. 393 (10191), 2636-2646 (2019).
  3. Beaudart, C., et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporosis International. 28 (6), 1817-1833 (2017).
  4. Ozer, H. K. Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties. 20 (11), 2772-2781 (2017).
  5. Subiria-Cueto, R., et al. Brosimum alicastrum Sw. (Ramón): An alternative to improve the nutritional properties and functional potential of the wheat flour tortilla. Foods. 8 (12), 1-18 (2019).
  6. Martínez-Ruiz, N., Torres, L. E. J., del Hierro-Ochoa, J. C., Larqué-Saavedra, A. Bebida adicionada con Brosimum alicastrum sw.: Una alternativa para requerimientos dietarios especiales. Revista Salud Pública y Nutrición. 18 (3), 1-10 (2019).
  7. Rodríguez-Tadeo, A., et al. Functionality of bread and beverage added with brosimum alicastrum sw. Seed flour on the nutritional and health status of the elderly. Foods. 10 (8), 1-21 (2021).
  8. Muñoz-Bernal, ÓA., et al. Nuevo acercamiento a la interacción del reactivo de Folin-Ciocalteu con azúcares durante la cuantificación de polifenoles totales. TIP Revista Especializada en Ciencias Químico-Biológicas. 20 (2), 28-33 (2017).
  9. Luca, S. V., et al. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition. 60 (4), 626-659 (2020).
  10. Kawabata, K., Yoshioka, Y., Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 24 (2), (2019).
  11. de Llano, D. G., Moreno-Arribas, M. V., Bartolomé, B. Cranberry polyphenols and prevention against urinary tract Infections: Relevant considerations. Molecules. 25 (15), (2020).
  12. Alsaleh, M., et al. Mass spectrometry: A guide for the clinician. Journal of Clinical and Experimental Hepatology. 9 (5), 597-606 (2019).
  13. Wang, X., Sun, H., Zhang, A., Wang, P., Han, Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. Journal of Separation Science. 34 (24), 3451-3459 (2011).
  14. Feliciano, R. P., Mills, C. E., Istas, G., Heiss, C., Rodriguez-Mateos, A. Absorption, metabolism and excretion of cranberry (poly)phenols in humans: A dose response study and assessment of inter-individual variability. Nutrients. 9 (3), (2017).
  15. Mateos, R., Goya, L., Bravo, L. Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver. Journal of Agricultural and Food Chemistry. 54 (23), 8724-8732 (2006).
  16. Rodriguez Lanzi,, Perdicaro, C., Antoniolli, D. J., Piccoli, A., Vazquez Prieto, M. A., Fontana, A. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry. Archives of Biochemistry and Biophysics. , 28-33 (2018).
  17. Hou, Y., He, D., Ye, L., Wang, G., Zheng, Q., Hao, H. An improved detection and identification strategy for untargeted metabolomics based on UPLC-MS. Journal of Pharmaceutical and Biomedical Analysis. 191, 113531(2020).
  18. Nagy, K., et al. First identification of dimethoxycinnamic acids in human plasma after coffee intake by liquid chromatography-mass spectrometry. Journal of Chromatography A. 1218 (3), 491-497 (2011).
  19. Marmet, C., Actis-Goretta, L., Renouf, M., Giuffrida, F. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. Journal of Pharmaceutical and Biomedical Analysis. 88, 617-625 (2014).
  20. McCord, J., Strynar, M. Identifying per-and polyfluorinated chemical species with a combined targeted and non-targeted-screening high-resolution mass spectrometry workflow. Journal of Visualized Experiments. 2019 (146), 1-15 (2019).
  21. Muñoz-Bernal, ÓA., et al. Phytochemical characterization and antiplatelet activity of Mexican red wines and their by-products. South African Journal of Enology and Viticulture. 42 (1), 77-90 (2021).
  22. Muñoz-Bernal, ÓA. Enriquecimiento de un vino tinto con un extracto de compuestos fenólicos provenientes de orujo de uva: bioaccesibilidad, análisis sensorial y respuesta biológica. Universidad Autónoma de Ciudad Juárez. , (2021).
  23. Low, D. Y., et al. Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Food Chemistry. , 357(2021).
  24. Sánchez-Patán, F., et al. Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targeted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry. 131 (1), 337-347 (2012).
  25. Zhang, X., Sandhu, A., Edirisinghe, I., Burton-Freeman, B. M. Plasma and urinary (poly)phenolic profiles after 4-week red raspberry (Rubus idaeus L.) intake with or without fructo-oligosaccharide supplementation. Molecules. 25 (20), (2020).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

182

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved