サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

この研究の目的は、初代ヒトT細胞を単離、活性化、および増殖させるための浮遊選鉱ベースの分離の実現可能性を実証することです。

要約

末梢血単核細胞(PBMC)からT細胞を単離して ex vivo 培養を確立するプロセスは、研究、臨床試験、および細胞ベースの治療にとって非常に重要です。この研究では、PBMCからT細胞を ex vivo で分離、活性化、および拡張するための簡単で新しいプロトコルが提示されます。この研究では、機能化された浮力活性化セルソーティング(BACS)技術を利用して、T細胞を分離および活性化します。簡単に言うと、このプロトコルには、ロイコパック由来のPBMCからのCD3+ 細胞のポジティブ選択と、それに続く24ウェルプレートへの形質導入前の、事前に結合した抗CD28結合ストレプトアビジンマイクロバブル(SAMB)による48時間の共刺激が含まれます。機能化されたマイクロバブルは、細胞を浮力的に活性化するユニークな機会を提供し、最小限の消耗で増殖を可能にする増殖表現型につながります。この技術は、共刺激マイクロバブルが浮力を維持し、培養培地の上部に戻るため、枯渇を低減し、膨張細胞が共刺激因子と接触する時間を短縮します。結果は、単離および培養されたT細胞が活性化および増殖するのに十分な刺激を受けるが、過剰なPD-1の存在によって実証されるように、過剰活性化につながる程度ではなく、その後枯渇につながることを示している。

概要

現在、世界中で500を超えるキメラ抗原受容体(CAR)-T細胞療法の臨床試験が実施されており、4つのCAR-T細胞療法製品が市場で入手可能です1。しかし、これらの潜在的に治癒的治療法の有効性、スケーラビリティ、および長期的な成功を改善するために対処しなければならない多くのCAR-T細胞研究および製造ニーズが依然として存在します2345養子CAR-T細胞の臨床研究と製造は、末梢血サンプルからのT細胞の単離と、その後の単離細胞の刺激、形質導入、および増殖から始まります。T細胞の回収率、純度、活性化/枯渇シグナルなどのパラメータは、CAR-T細胞の研究および製造のための細胞単離および刺激技術を選択する際に慎重に検討する必要があります3,4,6重要なことに、治療効果を高めるためには、T細胞枯渇などの現在の製造プロセスから生じる生物学的障害を最小限に抑えることによるCAR-T細胞療法の治療持続性の改善が必要である6,7

ここでは、蛍光活性化セルソーティング(FACS)や磁気活性化セルソーティング(MACS)などの従来の細胞単離法に代わるものとして、T細胞単離用のマイクロバブルを用いた浮力活性化セルソーティング(BACS)が実証されています。マイクロバブル分離は、浮力のある中空の微小球状体(マイクロバブル)を使用してターゲットを結合し、それらを流体サンプルの表面に浮遊させます8,9。マイクロバブルを抗体(すなわち抗CD3)で機能化することにより、所望のT細胞集団を末梢血サンプルから積極的に選択することができる。続いて、懸濁液中の陽性に選択されたT細胞を共刺激および活性化するための抗体機能化マイクロバブル(すなわち、抗CD28)の異なる集団の使用が、この研究において実証されている。マイクロバブルは、浮遊細胞培養や遺伝子組み換えや増殖などのダウンストリームアプリケーションに対応したT細胞を生成する、シンプルで高度に調整可能な単離および活性化ワークフローを提供します。重要なことに、マイクロバブルによる浮力細胞活性化は、抑制された細胞刺激を促進し、過剰なT細胞の枯渇を防ぎます7

この研究では、フローサイトメトリーは、機能化されたマイクロバブルの単離、活性化、形質導入の成功を分析し、形質導入後の成長段階と拡大段階に存在する特定の亜集団に関する詳細情報を提供するために使用された主要なツールでした。フローサイトメトリーに加えて、明視野顕微鏡と蛍光顕微鏡を使用して、細胞の健康状態、形態、形質導入の成功を確認しました。これらの結果に基づいて、マイクロバブル技術とプロトコルは、現在使用されている従来の分離および活性化方法に代わる、より調整可能で穏やかな代替手段を提供します。特に、マイクロバブル活性化細胞は、業界標準のツールやキットで通常観察されるものよりも、T細胞枯渇マーカーの発現が著しく低いことを示しています。

プロトコル

1. ポジティブセレクションを用いたマイクロバブルによるT細胞の単離

注:このプロトコルは、SAMBを使用した小規模なCD3+ ポジティブセレクションアプローチの詳細を示しています。

  1. 市販のPBMC3 x 108 個を、ビオチン化抗CD3(OKT3)抗体を100万細胞あたり25 ng(25 ng/M)の濃度でビオチン化抗CD3(OKT3)の分離バッファー中でインキュベートします。上下にピペッティングして穏やかに混合し、室温で10分間インキュベートします。
  2. ストレプトアビジンマイクロバブル(SAMB)を、メーカーが報告しているSAMB濃度に応じて0.5(SAMB量):1(細胞量)の比率で添加します。
  3. 市販のエンドオーバーエンド(EOE)ローテーターを使用して、室温で20rpmで10〜15分間混合します。室温で400 x g で5分間遠心分離します。
  4. 遠心分離後、陽性に選択された細胞はSAMBとともに懸濁液の上部になります。残りの選択されていない細胞は、チューブの下部にある細胞ペレットに含まれます。9インチのガラスピペットを使用して、気泡細胞層の下の先端をチューブの底に挿入し、セルペレットと亜清を電動ピペットで吸引し、新しいチューブに移します。

2. 陽性に選択されたT細胞の共刺激(活性化)

  1. 元のチューブに残っているバブルセル層を1 mLの完全なT細胞培地(または別の所望の培地)に再懸濁します。
  2. 自動セルカウンターを使用して明視野顕微鏡で清中の細胞をカウントし、開始細胞数からこの値を差し引いて、バブルセル層に捕捉された細胞数を決定します。
  3. このステップの前に、ビオチン化抗CD28抗体を市販のSAMBと最低2時間混合して、結合した抗CD28SAMBを作成します。SAMBの製造元に連絡して、結合に必要な抗CD28抗体の量を確認してください。ステップ2.1から得られたバブルセル懸濁液に、1.5(抗CD28 SAMB):1(細胞)の比率を使用して抗CD28結合SAMBを追加します。
  4. EOE回転を使用して15分間混合し、ステップ2.2で得られた細胞数に応じて、完全なT細胞培地または別の所望の培地で総容量をmLあたり200万細胞に調整します。

3. 細胞培養培地中の共刺激細胞の増殖

  1. ステップ 2.4 の活性化細胞 1 mL を 2 ウェルあたり 2 M/mL の濃度で 24 ウェルプレートに分配します。加湿した5%CO2 インキュベーターで37°Cでインキュベートします。
  2. 24時間後、50 U/mLのIL-2と25 ng/Mの可溶性抗CD3(OKT3)を添加して、0日目に播種した最初の細胞数を使用して計算したように、増殖をさらに促進します。細胞プレートを加湿したCO2 インキュベーターに戻し、37°Cで一晩インキュベートします。

4.オプション:レンチウイルスによる活性化T細胞の形質導入

注:ここで使用されているアプローチは、Prommersbergerらから採用されています10.

  1. レンチウイルスを室温で解凍し、ピペッティングで短時間混合します。
  2. ウェルの底にある娘細胞や溶液の表面に残っている気泡層に触れることなく、各ウェルから600 μLの中央清算液を静かに取り除きます。
  3. ウェルあたり5 μg/mLの臭化ヘキサジメトリンを添加して、ウイルスの形質導入を強化します。感染多重度(MOI)3(細胞当たりのレンチウイルス粒子)でレンチウイルス粒子を追加します。
  4. プレートを800 x g および32°Cで45分間遠心分離し、減速のための中断なしでゆっくりと加速します。細胞を37°Cの加湿CO2 インキュベーター内で4時間インキュベートする。
  5. 4時間後、市販の新鮮な完全T細胞培地600 μLとIL-250 U/mLを各ウェルに加え、細胞プレートを37°Cの加湿CO2 インキュベーターに戻してT細胞増殖させます。

5. T細胞の増殖(事前の形質導入の有無にかかわらず)

  1. 2日ごとに、培地の半分を中間清汁から取り出し、新鮮で完全なT細胞培地と交換し、50 U/mLの濃度でIL-2を加えます。
  2. T細胞を週に2回カウントして、細胞密度を評価します。細胞密度が2 x 10 6-2.5 x10 6細胞/ mLを超える場合は、細胞をより大きな容器に移し、5 x 105細胞/ mLに希釈します。

6. T細胞の採取とフローサイトメトリー

  1. 上下にピペッティングして各ウェルの内容物を穏やかに混合します。マイクロバブルを含むウェルの内容物全体を取り除き、1.5 mLチューブに移します。
  2. 400 μLのカルシウムフリーおよびマグネシウムフリーのDPBS(-/-)で各ウェルを洗浄し、溶液を1.5 mLチューブに移します。室温で400 x g で5分間遠心分離します。
  3. 上清を吸引し、細胞ペレットを50 μLの分離バッファーに再懸濁した。
  4. 活性化および枯渇抗体/染色カクテルで染色し、暗所で室温で10分間インキュベートします。次のように染色カクテルを準備します-活性化カクテル:AF700-CD3、PE /ダズル-CD4、PE / Cy7-CD8、BV510-CD25、PE-CD69;枯渇カクテル:AF700-CD3、PE /ダズル-CD4、PE / Cy7-CD8、PE-PD-1。
  5. 1 mLの分離バッファーを加え、穏やかに混合します。室温で400 x gで5分間遠心分離し、余分な抗体を洗い流します。上清を完全に吸引します。
  6. 細胞ペレットを1 mLの分離バッファーに再懸濁し、フローサイトメトリー分析のために適切な容器(FACSチューブ、96ウェルプレートなど)に移します。推奨されるフローサイトメトリー解析ゲーティングスキームの詳細を 図1に示します。

結果

T細胞を購入したPBMCから単離し、プロトコルに記載されているように活性化のために播種した。陰性対照サンプル(購入したPBMC)は活性化されなかった。これらの対照サンプルは、マイクロバブル活性化プロセスが実験サンプルに与えた影響を、手つかずおよび刺激されていないT細胞対照と比較して実証するために含まれ、観察された活性化マーカーが追加された活性化因子の結果であり、T細...

ディスカッション

記載されたプロトコルは、PBMCサンプルからのT細胞の単離およびマイクロバブルを含む培地中の懸濁T細胞の活性化を可能にする。この方法は、その固有の浮力が細胞に共刺激シグナルを導入し、培養培地に懸濁している間にそれらを活性化するユニークな機会を提供する機能化されたマイクロバブルに依存しており、それによって拡大する細胞の長時間の刺激への曝露を低減します。このよ?...

開示事項

著者は全員、投稿時点で、マイクロバブル分離製品を製造・販売するアカデミーライフサイエンスの社員です。

謝辞

何一つ。

資料

NameCompanyCatalog NumberComments
2-MercaptoethanolGibco21985-023CAS: 60-24-2
Biologix Multi-Well Culture Plates 24-well platesVWR 76081-560
Biotin anti-human CD28 (28.2) AntibodyBiolegend302904
Biotin anti-human CD3 (OKT3) AntibodyBiolegend317320
DPBS, no calcium, no magnesiumGibco14190-136
GlutaMAX SupplementThermofisher35050061
Human Recombinant IL2 BioVision (vwr)10006-122
Lentiviral Particle rLV.EF1.zsGreen1-9Takara Bio0038VCT
LeukopakBioIVTHUMANLMX100-0001129
Normal Human PBMCsBioIVTHUMANHLPB-0002562
Penicillin/Streptomycin 100X for tissue cultureVWR97063-708CAS: 8025-06-7
Polybrene Infection/Transfection ReagentMillipore SigmaTR-1003-GCAS:28728-55-4
Pooled Human AB Serum Plasma Derived Heat InactivatedInnovative ResearchISERABHI100mL
RPMI 1640 Medium, GlutaMAX Supplement, HEPESGibco72400047
Streptavidin Microbubble Kit (includes Akadeum's separation buffer)Akadeum11110-000

参考文献

  1. Albinger, N., Hartmann, J., Ullrich, E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Therapy. 28 (9), 513-527 (2021).
  2. Tyagarajan, S., Spencer, T., Smith, J. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. Molecular Therapy. Methods & Clinical Development. 16, 136-144 (2019).
  3. Stock, S., Schmitt, M., Sellner, L. Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy. International Journal of Molecular Sciences. 20 (24), 6223 (2019).
  4. Rohaan, M. W., Wilgenhof, S., Haanen, J. B. A. G. Adoptive cellular therapies: The current landscape. Virchows Archiv. 474 (4), 449-461 (2019).
  5. Abou-El-Enein, M., et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discovery. 2 (5), 408-422 (2021).
  6. Poltorak, M. P., et al. Expamers: A new technology to control T cell activation. Scientific Reports. 10, 17832 (2020).
  7. Kagoya, Y., et al. Transient stimulation expands superior antitumor T cells for adoptive therapy. JCI Insight. 2 (2), 89580 (2017).
  8. Snow, T., Roussey, J., Wegner, C., McNaughton, B. Application No. 63/326,446. US Patent. , (2022).
  9. McNaughton, B., et al. Application No. 16/004,874. US Patent. , (2018).
  10. Prommersberger, S., Hudecek, M., Nerreter, T. Antibody-based CAR T cells produced by lentiviral transduction. Current Protocols in Immunology. 128 (1), 93 (2020).
  11. Wijewarnasuriya, D., Bebernitz, C., Lopez, A. V., Rafiq, S., Brentjens, R. J. Excessive costimulation leads to dysfunction of adoptively transferred T cells. Cancer Immunology Research. 8 (6), 732-742 (2020).
  12. Li, Y., Kurlander, R. J. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: Differing impact on CD8 T cell phenotype and responsiveness to restimulation. Journal of Translational Medicine. 8, 104 (2010).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

190

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved