このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
* These authors contributed equally
Short-latency afferent inhibition (SAI) is a transcranial magnetic stimulation protocol to probe sensorimotor integration. This article describes how SAI can be used to study the convergent sensorimotor loops in the motor cortex during sensorimotor behavior.
Skilled motor ability depends on efficiently integrating sensory afference into the appropriate motor commands. Afferent inhibition provides a valuable tool to probe the procedural and declarative influence over sensorimotor integration during skilled motor actions. This manuscript describes the methodology and contributions of short-latency afferent inhibition (SAI) for understanding sensorimotor integration. SAI quantifies the effect of a convergent afferent volley on the corticospinal motor output evoked by transcranial magnetic stimulation (TMS). The afferent volley is triggered by the electrical stimulation of a peripheral nerve. The TMS stimulus is delivered to a location over the primary motor cortex that elicits a reliable motor-evoked response in a muscle served by that afferent nerve. The extent of inhibition in the motor-evoked response reflects the magnitude of the afferent volley converging on the motor cortex and involves central GABAergic and cholinergic contributions. The cholinergic involvement in SAI makes SAI a possible marker of declarative-procedural interactions in sensorimotor performance and learning. More recently, studies have begun manipulating the TMS current direction in SAI to tease apart the functional significance of distinct sensorimotor circuits in the primary motor cortex for skilled motor actions. The ability to control additional pulse parameters (e.g., the pulse width) with state-of-the-art controllable pulse parameter TMS (cTMS) has enhanced the selectivity of the sensorimotor circuits probed by the TMS stimulus and provided an opportunity to create more refined models of sensorimotor control and learning. Therefore, the current manuscript focuses on SAI assessment using cTMS. However, the principles outlined here also apply to SAI assessed using conventional fixed pulse width TMS stimulators and other forms of afferent inhibition, such as long-latency afferent inhibition (LAI).
Multiple sensorimotor loops converge in the motor cortex to shape pyramidal tract projections to spinal motor neurons and interneurons1. However, how these sensorimotor loops interact to shape corticospinal projections and motor behavior remains an open question. Short-latency afferent inhibition (SAI) provides a tool to probe the functional properties of convergent sensorimotor loops in motor cortex output. SAI combines motor cortical transcranial magnetic stimulation (TMS) with electrical stimulation of the corresponding peripheral afferent nerve.
TMS is a non-invasive method to safely stimulate pyramidal motor neu....
The following protocol can be applied to various experiments. The information provided details an experiment in which SAI is used to quantify sensorimotor integration during a finger response to a validly or invalidly cued probe. In this protocol, SAI is assessed without a task, then concurrently during the cued sensorimotor task, and then again without a task. The cTMS stimulator can be replaced by any commercially available conventional TMS stimulator. However, the pulse width of the conventional TMS stimulator would b.......
Figure 3 illustrates examples of unconditioned and conditioned MEPs from a single participant elicited in the FDI muscle during the sensorimotor task using PA120- and AP30- (subscript denotes pulse width) induced current. The bar graphs in the middle column illustrate the raw average peak-to-peak MEP amplitudes for the unconditioned and conditioned trials. The bar graphs to the right show the SAI and MEP onset latencies for the PA120- and AP30-indu.......
The SAI method described here probes a subset of neural pathways that play a role in sensorimotor performance and learning. Assessing SAI while participants perform controlled sensorimotor tasks is critical for disentangling the complex contributions of the numerous sensorimotor loops that converge on the motor corticospinal neurons to shape the motor output in healthy and clinical populations. For example, a similar methodology has been used to identify the cerebellar influence over procedural motor control processes
The authors acknowledge funding from the Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation (CFI), and the Ontario Research Fund (ORF) awarded to S.K.M.
....Name | Company | Catalog Number | Comments |
Acquisition software (for EMG) | AD Instruments, Colorado Springs, CO, USA | PL3504/P | LabChart Pro version 8 |
Alcohol prep pads | Medline Canada Corporation, Mississauga, ON, Canada | 211-MM-05507 | Alliance Sterile Medium, Antiseptic Isopropyl Alcohol Pad (200 per box) |
Amplifier (for EMG) | AD Instruments, Colorado Springs, CO, USA | FE234 | Quad Bio Amp |
Cotton round | Cliganic, San Francisco, CA, USA | CL-BE-019-6PK | Premium Cotton Rounds (6-pack, 90 per package) |
cTMS coils | Rogue Research, Montréal, QC, Canada | COIL70F80301 | 70 mm Medium Inductance Figure-8 coil |
cTMS coils | Rogue Research, Montréal, QC, Canada | COIL70F80301-IC | 70 mm Medium Inductance Figure-8 coil (Inverted Current) |
cTMS stimulator | Rogue Research, Montréal, QC, Canada | CTMSMU0101 | Elevate cTMS stimulator |
Data acquisition board (for EMG) | AD Instruments, Colorado Springs, CO, USA | PL3504 | PowerLab 4/35 |
Digital to analog board | National Instruments, Austin, TX, USA | 782251-01 | NI USB-6341, X Series DAQ Device with BNC Termination |
Dispoable adhesive electrodes (for EMG) | Covidien, Dublin, Ireland | 31112496 | Kendal 130 Foam Electrodes |
Electrogel | Electrodestore.com | E9 | Electro-Gel for Electro-Cap (16 oz jar) |
Nuprep | Weaver and Company, Aurora, CO, USA | 10-30 | Nuprep skin prep gel (3-pack of 4 oz tubes) |
Peripheral electrical stimulator | Digitimer, Hertfordshire, UK | DS7R | DS7R High Voltage Constant Current Stimulator |
Reusable bar electrode | Electrodestore.com | DDA-30 | Black Bar Electrode, Flat, Cathode Distal |
Software (for behaviour and stimulator triggering) | National Instruments, Austin, TX, USA | 784503-35 | Labview 2020 |
TMS stereotactic coil guidance system | Rogue Research, Montréal, QC, Canada | KITBSF0404 | BrainSight Neuronavigation System |
Transpore tape | 3M, Saint Paul, MN, USA | 50707387794571 | Transpore Medical Tape (1 in x 10 yds) |
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved