Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
* Diese Autoren haben gleichermaßen beigetragen
Die afferente Hemmung mit kurzer Latenz (SAI) ist ein transkranielles Magnetstimulationsprotokoll zur Untersuchung der sensomotorischen Integration. Dieser Artikel beschreibt, wie SAI verwendet werden kann, um die konvergenten sensomotorischen Schleifen im motorischen Kortex während des sensomotorischen Verhaltens zu untersuchen.
Qualifizierte motorische Fähigkeiten hängen von der effizienten Integration der sensorischen Afferenz in die entsprechenden motorischen Befehle ab. Die afferente Inhibition stellt ein wertvolles Werkzeug dar, um den prozeduralen und deklarativen Einfluss auf die sensomotorische Integration während qualifizierter motorischer Handlungen zu untersuchen. Dieses Manuskript beschreibt die Methodik und den Beitrag der afferenten Hemmung (SAI) mit kurzer Latenz zum Verständnis der sensomotorischen Integration. SAI quantifiziert die Wirkung einer konvergenten afferenten Salve auf die kortikospinale motorische Leistung, die durch transkranielle Magnetstimulation (TMS) hervorgerufen wird. Die afferente Salve wird durch die elektrische Stimulation eines peripheren Nervs ausgelöst. Der TMS-Stimulus wird an eine Stelle über dem primären motorischen Kortex abgegeben, die eine zuverlässige motorisch evozierte Reaktion in einem Muskel hervorruft, der von diesem afferenten Nerv versorgt wird. Das Ausmaß der Hemmung in der motorisch evozierten Antwort spiegelt das Ausmaß der afferenten Salve wider, die auf den motorischen Kortex konvergiert und zentrale GABAerge und cholinerge Beiträge umfasst. Die cholinerge Beteiligung an SAI macht SAI zu einem möglichen Marker für deklarativ-prozedurale Interaktionen in der sensomotorischen Leistung und beim Lernen. In jüngerer Zeit haben Studien begonnen, die TMS-Stromrichtung bei SAI zu manipulieren, um die funktionelle Bedeutung bestimmter sensomotorischer Schaltkreise im primären motorischen Kortex für qualifizierte motorische Handlungen zu zerlegen. Die Möglichkeit, zusätzliche Pulsparameter (z. B. die Pulsbreite) mit dem hochmodernen steuerbaren Pulsparameter TMS (cTMS) zu steuern, hat die Selektivität der sensomotorischen Schaltkreise, die durch den TMS-Stimulus untersucht werden, verbessert und die Möglichkeit geboten, verfeinerte Modelle der sensomotorischen Kontrolle und des Lernens zu erstellen. Daher konzentriert sich das vorliegende Manuskript auf die Bewertung von ORKB mittels cTMS. Die hier skizzierten Prinzipien gelten jedoch auch für SAI, die mit konventionellen TMS-Stimulatoren mit fester Pulsbreite und anderen Formen der afferenten Hemmung, wie z. B. der afferenten Hemmung mit langer Latenz (LAI), bewertet wird.
Mehrere sensomotorische Schleifen konvergieren im motorischen Kortex, um Pyramidenbahnprojektionen zu spinalen Motoneuronen und Interneuronen zu formen1. Wie diese sensomotorischen Schleifen interagieren, um kortikospinale Projektionen und motorisches Verhalten zu formen, bleibt jedoch eine offene Frage. Die afferente Hemmung (SAI) mit kurzer Latenz bietet ein Werkzeug, um die funktionellen Eigenschaften konvergenter sensomotorischer Schleifen in der Ausgabe des motorischen Kortex zu untersuchen. Die SAI kombiniert die motorische kortikale transkranielle Magnetstimulation (TMS) mit der elektrischen Stimulation des entsprechenden peripheren affe....
Das folgende Protokoll kann auf verschiedene Experimente angewendet werden. Die bereitgestellten Informationen beschreiben ein Experiment, in dem SAI verwendet wird, um die sensomotorische Integration während einer Fingerreaktion auf eine gültig oder ungültig gesteuerte Sonde zu quantifizieren. In diesem Protokoll wird die SAI ohne Aufgabe, dann gleichzeitig während der sensomotorischen Aufgabe und dann wieder ohne Aufgabe bewertet. Der cTMS-Stimulator kann durch jeden handelsüblichen konventionellen TMS-Stimulator ersetzt werden. Die Pulsbreite des herkömmlichen TMS-Stimulators wäre jedoch je nach spezifischer Hardware zwischen 70-82 μs festgelegt59....
Abbildung 3 zeigt Beispiele von unkonditionierten und konditionierten MEPs eines einzelnen Teilnehmers, die während der sensomotorischen Aufgabe mit PA120- und AP30- (Index bezeichnet die Pulsbreite) induzierten Strom im FDI-Muskel hervorgerufen wurden. Die Balkendiagramme in der mittleren Spalte veranschaulichen die rohen durchschnittlichen Peak-to-Peak-MEP-Amplituden für die unkonditionierten und konditionierten Versuche. Die Balkendiagramme auf der rechten Seite ze.......
Die hier beschriebene SAI-Methode untersucht eine Untergruppe von Nervenbahnen, die eine Rolle bei der sensomotorischen Leistung und dem Lernen spielen. Die Beurteilung der SAI, während die Teilnehmer kontrollierte sensomotorische Aufgaben ausführen, ist entscheidend, um die komplexen Beiträge der zahlreichen sensomotorischen Schleifen zu entwirren, die auf den motorischen kortikospinalen Neuronen zusammenlaufen, um die motorische Leistung in gesunden und klinischen Populationen zu formen. Zum Beispiel wurde eine ähn.......
Die Autoren haben nichts zu verraten.
Die Autoren würdigen die Förderung durch den Natural Sciences and Engineering Research Council (NSERC), die Canada Foundation for Innovation (CFI) und den Ontario Research Fund (ORF), die S.K.M.
....Name | Company | Catalog Number | Comments |
Acquisition software (for EMG) | AD Instruments, Colorado Springs, CO, USA | PL3504/P | LabChart Pro version 8 |
Alcohol prep pads | Medline Canada Corporation, Mississauga, ON, Canada | 211-MM-05507 | Alliance Sterile Medium, Antiseptic Isopropyl Alcohol Pad (200 per box) |
Amplifier (for EMG) | AD Instruments, Colorado Springs, CO, USA | FE234 | Quad Bio Amp |
Cotton round | Cliganic, San Francisco, CA, USA | CL-BE-019-6PK | Premium Cotton Rounds (6-pack, 90 per package) |
cTMS coils | Rogue Research, Montréal, QC, Canada | COIL70F80301 | 70 mm Medium Inductance Figure-8 coil |
cTMS coils | Rogue Research, Montréal, QC, Canada | COIL70F80301-IC | 70 mm Medium Inductance Figure-8 coil (Inverted Current) |
cTMS stimulator | Rogue Research, Montréal, QC, Canada | CTMSMU0101 | Elevate cTMS stimulator |
Data acquisition board (for EMG) | AD Instruments, Colorado Springs, CO, USA | PL3504 | PowerLab 4/35 |
Digital to analog board | National Instruments, Austin, TX, USA | 782251-01 | NI USB-6341, X Series DAQ Device with BNC Termination |
Dispoable adhesive electrodes (for EMG) | Covidien, Dublin, Ireland | 31112496 | Kendal 130 Foam Electrodes |
Electrogel | Electrodestore.com | E9 | Electro-Gel for Electro-Cap (16 oz jar) |
Nuprep | Weaver and Company, Aurora, CO, USA | 10-30 | Nuprep skin prep gel (3-pack of 4 oz tubes) |
Peripheral electrical stimulator | Digitimer, Hertfordshire, UK | DS7R | DS7R High Voltage Constant Current Stimulator |
Reusable bar electrode | Electrodestore.com | DDA-30 | Black Bar Electrode, Flat, Cathode Distal |
Software (for behaviour and stimulator triggering) | National Instruments, Austin, TX, USA | 784503-35 | Labview 2020 |
TMS stereotactic coil guidance system | Rogue Research, Montréal, QC, Canada | KITBSF0404 | BrainSight Neuronavigation System |
Transpore tape | 3M, Saint Paul, MN, USA | 50707387794571 | Transpore Medical Tape (1 in x 10 yds) |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten