This video demonstrates the technique of anterior cervical discectomy and fusion in the ovine model.
Undecalcified bone histology provides important information for a variety of clinical and research applications. It is technically challenging, particularly with large size specimens. This video illustrates the process of producing good quality sections and demonstrates the technical difficulties and methods with which to overcome them.
We describe examination of fetal cardiac function with contemporary functional fetal echocardiography and fetoplacental Doppler ultrasound using the VisualSonics VEVO 2100 microultrasound in a surgically induced model of intrauterine fetal growth restriction in a rabbit.
Analysis of vestibular hair cell function is complicated by their location deep within the hardest part of the skull, the petrous temporal bone. Most functional hair cell studies have used acutely isolated hair cells. Here we describe a semi-intact preparation of mouse vestibular epithelium for electrophysiological and two-photon microscopy studies.
The assessment of respiratory physiology has traditionally relied upon techniques, which require restraint or sedation of the animal. Unrestrained whole-body plethysmography, however, provides precise, non-invasive, quantitative analysis of respiratory physiology in animal models. In addition, the technique allows repeated respiratory assessment of mice allowing for longitudinal studies.
We describe a protocol to isolate and culture human amnion epithelial cells (hAECs) using animal product-free reagents in accordance with current good manufacturing practices (cGMP) guidelines.
Intervertebral disc degeneration is a significant contributor to back pain and a leading cause of disability worldwide. Numerous animal models of intervertebral disc degeneration exist. We demonstrate an ovine model of intervertebral disc degeneration, utilizing a drill bit, which achieves a consistent disc injury and reproducible level of disc degeneration.
A protocol for the isolation of primary microglia from murine brains is presented. This technique aids in furthering the current understanding of neurological conditions. Density gradient centrifugation and magnetic separation are combined to produce sufficient yield of a highly pure sample. Furthermore, we outline the steps for characterization of microglia.
Automation is key to upscaling and cost management in cell manufacturing. This manuscript describes the use of a counterflow centrifugal cell processing device for automating the buffer exchange and cell concentration steps for small-scale bioprocessing.
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유