로그인

A method involving the transformation of methyl ketones to carboxylic acids using excess base and halogen is called the haloform reaction. It begins with the deprotonation of α hydrogen to form an enolate ion which reacts with the electrophilic halogen to give an α-halo ketone. The step continues until all the α protons are substituted to form a trihalomethyl ketone. The resulting molecule is unstable, and in the presence of a hydroxide base, it readily undergoes nucleophilic acyl substitution. This leads to the expulsion of trihalomethyl carbanion and produces carboxylic acid. The carbanion generated is stable owing to the electron-withdrawing effect of the three halogens. Subsequent deprotonation of the acid by carbanion forms a carboxylate and haloform, which is the driving force of the reaction. Finally, acidification of the carboxylate gives the desired product, and the reaction is named after the by-product. Using chlorine or bromine results in immiscible liquids of chloroform and bromoform. In contrast, iodine forms a yellow precipitate of iodoform, often used to detect methyl ketones in unknown substrates.

Tags

HalogenationMethyl KetonesHaloform ReactionEnolate IonElectrophilic HalogenAlpha halo KetoneTrihalomethyl KetoneHydroxide BaseNucleophilic Acyl SubstitutionCarboxylic AcidTrihalomethyl CarbanionElectron withdrawing EffectCarboxylateHaloform By productChlorineBromineIodineChloroformBromoformIodoform

장에서 15:

article

Now Playing

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.3 : 에놀(Enol)과 에놀라산(Enolate)의 종류

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

article

15.15 : 염기 촉매 알돌 첨가 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유