JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
MRI 기반 도구를 식별하기로 확산 텐서 영상 (DTI)는 기본적으로 제공 생체 내 대뇌 백질 내의 신경 장애로 인해 뇌와 병적 인 프로세스의 미세 구조. DTI 기반 분석은 그룹 수준과 하나의 주제 데이터를 모두 뇌 질환에 응용 프로그램을 허용합니다.
확산 텐서 영상 (DTI) 기술은 생체 내에서 대뇌 백질 (WM)의 미세 프로세스에 대한 정보를 제공합니다. 현재 응용 프로그램은 대조군에 비해 다른 DTI 분석을 사용하여 서로 다른 뇌 질환, 특히 퇴행성 신경 질환에 WM 참여 패턴의 차이를 조사하기 위해 설계되었습니다.
DTI 데이터 분석은 변량 방식으로 수행됩니다, 함께 섬유 추적과 같은 부분 이방성 등의 지역 확산 방향 기반의 메트릭 (FA), (FT) 즉 voxelwise 비교 순서로 그룹 수준에서 tractwise 분수 이방성 통계 (TFAS)와 함께 그룹 수준에서 WM의 변경 지역의 패턴의 정의를 목표로, WM 구조에 따라 FA의 차이를 식별합니다. 정위 표준 공간으로 변환 그룹 연구를위한 전제 조건이며, D를 유지하기 위해 처리 철저한 데이터를 필요로irectional 상호 의존성. 현재 응용 프로그램은 그룹 수준에서의 데이터 분석에서 공간 정상화 동안 양적, 방향 정보의 보존을위한 최적화 된 기술 방법을 보여줍니다. 이 기초에, FT 기술은 FT에 의해 정의 된 메트릭 정보를 정량화하기 위해 그룹의 평균 데이터에 적용 할 수 있습니다. 또한, DTI 방법의 응용 프로그램, 개별 과목 단위에서 종 분석 정위 정렬 후 FA-지도 즉 차이, 신경 장애의 진행에 대한 정보를 알 수있다. DTI 기반의 결과를 더욱 품질 개선은 높은 소음 수준 그라데이션 방향 제어 제거의 응용 프로그램에 의해 전처리하는 동안 얻을 수 있습니다.
요약하면, DTI는 뇌 전체 기반 및 기관 기반 DTI 분석의 조합에 의해 다양한 뇌 질환의 독특한 WM의 pathoanatomy을 정의하는 데 사용됩니다.
인간의 뇌 확산 텐서 영상
중추 신경계 백질 (WM) 책자는 neuroglia 세포의 다른 작은 집단의 여러 유형의 이외에 밀집 축삭으로 구성되어 있습니다. 축삭 내의 축삭 막뿐만 아니라, 잘 정렬 된 단백질 섬유는 뇌 WM 1 이방성 물 확산을 선도 섬유 방향으로 물 확산 수직을 제한합니다. 축삭의 주위에 수초도 내 및 세포 외 수분이 모두 이방성에 기여할 수 있습니다.
이 이방성의 정량적 인 설명은 확산 텐서 영상 (DTI)에 의해 감지 될 수있다. DTI 물 확산의 로컬 미세 특성 가중치 조직의 이미지를 생성합니다. 각 위치에서의 이미지 강도는 (로 표현 소위 자기 확산 그라디언트의 강도와 방향에 따라 감쇠B 값),뿐만 아니라 물 분자가 3 확산하는 지역의 미세 구조, 확산 계수 D, 스칼라 값에 :
그러나 WM에서 이방성의 존재 확산은 더 이상 단일 스칼라 계수를 특징으로,하지만 텐서를 필요로 할 수있다 첫 번째 접근에서 이러한 방향으로 4 사이의 각 방향과 상관 관계에 따라 분자의 이동성을 설명하는. 확산 이방성은 주로 WM의 섬유 책자의 방향에 의해 발생되고 그 마이크로 및 macrostructural 기능에 의해 영향을 받는다. 미세 기능, intraaxonal 조직 섬유의 밀도 외에 확산 이방성에 큰 영향이 될 것으로 보인다ND 세포 포장, 수초 정도, 개별 섬유 직경. 거시적 규모에서 영상 복셀의 모든 WM 책자의 방향 변화는 이방성 5의 정도에 영향을 미칩니다.
일반적인 DTI 측정에서 복셀 치수는 밀리미터의 순서에 있습니다. 따라서, 복셀은 항상 일반적으로 여러 축삭뿐만 아니라 주변의 물 분자를 포함 검출 볼륨 내부의 물 분자의 평균 정보가 포함되어 있습니다. 이 다각적 인 환경에도 불구하고, DTI가 주된 축삭 방향으로 정렬 큰 주축의 방향에 민감, 즉 축삭 기여도는 측정 된 신호 2를 지배하고있다.
첫째, 확산 이방성 5 번째와 두 번째의 방향에 의존 정도, imag에 물 확산의 주된 방향 : DTI 물 확산의 속성에 대한 두 가지 종류의 정보를 제공전자 복셀이 확산 방향 6 즉.
다음에 설명 된대로 현재의 프로토콜은 그룹 수준에서 대상 그룹의 정량적 비교를 위해 DTI 분석 기술의 프레임 워크를 제공하기로되어있다.
확산 특성의 정량 분석 - 매개 변수
B (식 1) 텐서되고있다 있도록 대칭 텐서의 요소는 신호 감쇠의 결과로, 적어도 6 비 직선이 아닌 평면 방향을 따라 확산 기울기에 의해 측정 될 수있다
이 방정식은 직교 방향 (크로스 용어)에 적용에도 적용되는 이미징 그라디언트 사이 영상과 확산 기울기 사이의 상호 작용에 대한 회계 처리를 필요로직교 방향 4인치
두 번째 순위 확산 텐서 항상 텐서의 주 대각선을 따라 세 개만 아닌 요소를 떠나 diagonalized 수 있습니다 (고유 값, 즉
). 고유 값 타원체의 모양이나 구성을 반영합니다. 타원체와 실험실 프레임의 주요 좌표 사이의 수학적 관계는 고유 벡터에 의해 설명되어 있습니다
텐서 데이터를 표시하는 몇 가지 과제가 있기 때문에, 확산 타원체의 개념은 3을 제안하고있다. 이러한 전자의 Eigendiffusivities타원체의 이심률이에 대한 정보를 제공하는 반면 타원체의 주축이, 섬유의 방향과 일치 복셀의 주요 확산 방향을 나타냅니다 즉 llipsoids는 매체의 확산 계수의 기본 방향으로 일차원 확산 계수를 나타내는 이방성과 대칭의 정도. 따라서, 소수 이방성 (FA)로 확산 이방성 측정은 7 정의 할 수 있습니다.
모든 고유 값의 산술 평균입니다.
추가 방법은 tractography approa에 해당하는 뇌의 WM 연결을 해결하기 위해 확산 텐서의 주요 방향을 사용하는 것입니다어떤 채널은 서로 연결되어있는 뇌의 부분 조사 할 의도를 가지고 있습니다. 확산 텐서의 주요 구성 요소의 방향이 지배적 인 축삭 책자의 방향을 나타내는 가정 각 벡터 섬유 방향을 나타내는에 3 차원 벡터 필드가 제공됩니다. 첫 번째 범주는 섬유 기관 전파 2,8,9의 각 단계의 로컬 텐서 정보를 사용하여 선 전파 알고리즘을 기반으로합니다 : 현재, 두 가지 유형으로 나눌 수있다 WM 책자를 재구성하는 여러 가지 방법이 있습니다. 두 번째 범주는 요로 기반 공간 통계의 접근 방식의 결과로 두 개의 WM 영역 사이의 에너지 적으로 가장 유리한 경로를 찾기 위해 세계 에너지 최소화를 기반으로 (TBSS)은 tractwise 부분 이방성 통계 (TFAS 다른 알고리즘에 사용 된 10 - 프로토콜 텍스트 섹션 2.4 참조)..
정위 스탠드로 변환ARD 공간
다른 고급 MRI 방법에서와 마찬가지로, 임상 상황에서 DTI와 FT-기반의 연구는 11 미터 일부 차별에 기초하여 진단 과정을 촉진하기 위해 개별 환자의 뇌 형태를 분류하는 궁극적 인 목표를 추구한다. 일반적인 임상 표현형은 하나 이상의 특정 뇌 영역 또는 특정 해부학 적 네트워크에 손상으로 인해 있어야하는 경우 그룹 수준에서 연구가 가장 관련이 있습니다. 여기에, 다른 과목에 대한 결과의 평균은 미세 변화의 일반적인 패턴을 평가하기 위해 유용합니다. 각각의 뇌는 그래서, 두 번째 단계에서, 평균 산술 복셀 별 복셀 수준의 결과 수 있습니다 정위 공간으로 전송할 수있다. 공간 정규화 신호 대 잡음비 (SNR)를 향상시키고 환자의 샘플 및 연속의 비교를 수행하기 위해 다른 과목에서 얻은 결과의 산술 평균을 허용rols는 특정 장애의 계산 pathoanatomy을 분석하기 위해, 특정 두뇌 시스템의 허식과 관련된 신경 퇴행성 질환 예를 들면.
12에 의해 표준화 된 정위 공간 정상화의 초기 접근 방식은 다양한 뇌 랜드 마크와 뇌 사분면의 단편적인 확장의 식별을 포함하는 표준 아틀라스로 변환 알고리즘을 제안 하였다. 요즘 고급 MRI 데이터 분석 패키지의 대부분은 몬트리올 신경학 연구소 (MNI) 정위의 공간 (13)에 정상화를 사용합니다. 이 변환에 대한, 연구 특정 템플릿을 사용하여 반자동 및 자동 뇌 등록 알고리즘은 14,15을 개발 하였다. DTI에 특별한주의가 정상화 과정 16, 17시 방향 정보를 보존 그릴 수있다. DT-MR 이미지에 공간 변환의 응용 프로그램이있는 공간 정상화에 필요한의 데이터 세트의 컬렉션 DTS 다시 변형에 의해 영향을 배향성 정보가 포함되어 있다는 사실에 의해 복잡하게 휘게하는 스칼라 이미지는 대조적이다. 이 효과는 변환 된 이미지의 해부학 적 정확성을 보장하기 위해 고려되어야합니다. 여기에 DTI 데이터 세트에 아핀 변환을 적용하기위한 방법을 제시한다.
뇌 질환에 대한 DTI 적용
세로 DTI 데이터의 비교는 서로간에 하나의 주제 데이터의 정렬 / 등록을해야합니다. 그런 맥락에서, 방향 정보의 보존 (아핀 변환 중에 확산 텐서 즉 회전)가 필요합니다. 퇴행성 신경 질환에 대한 가능한 응용 프로그램 (예 : 18,19) 이전에보고되었다.
DTI는 생체 neuropathol에서 조사하는 강력한 비 침습 기술 도구로 설립되었습니다WM 신경 책자의 OGY (예 : 11,20,21,22). 확산 공정의 DTI 기반의 정량적 측정이 FA 예를 들어, 이미 뇌졸중 20, 다발성 경화증 23 일 루게릭 병 24, 25, 알츠하이머 병 26 등 WM 병리의 넓은 범위를 공부 민감한 마커로 표시되었습니다 , 그리고 여러 가지 다른 WM 장애 27,28.
또한, FT와 DTI는 WM 책자 23 번을 식별하는 데 사용할 수 있습니다. 이 기술은 여전히 일상적인 임상 사용, 신경 질환에서 경로 별 이상의 평가를위한 강력한 도구로 떠오르고있다하지 동안. 확인 된 책자에서 다양한 정량적 MRI 지수는 DTI 데이터에 대한 해부학 적 coregistered입니다 측정 할 수있는 DTI와 추가 인수 (예 : T2 강조 영상 및 / 또는 자화 전송 (MT) 이미징)에서 유래. 이로써, 각 인덱스는 calcul을 수기관 프로필로 자신의 공간 변화를 묘사하는 그래프를 참조하여 기관 내에서의 위치의 함수로 ated.
1.5에서 수행 된 다음, 인간의 DTI 검사에서 테슬라 MRI-스캐너 (지멘스 의료, 에를 랑겐, 독일)의 환자 군에서뿐만 아니라 개인의 흰색 물질 이상을 검출하기위한 다양한 분석 기법의 가능성을 조사 하였다. 유물의 다른 종류의 모션 손상된 볼륨과 볼륨의 제거를위한 자동 품질 검사 후, 표준화 된 후 처리 절차는 연속 분석을위한 DTI 데이터를 준비합니다. 다른 분석 방법은 다음에 설명, 즉 공간 통계를 기반으로 첫 번째, 전체 뇌 (WBSS), 초, FT, 그리고 세 번째, Tractwise 분수 이방성 통계 (TFAS). 수 WBSS는 일반적으로 DTI 데이터 (VBM / DTI)에 복셀 기반 형태 계측 / 통계로 알려져 있습니다 복셀 기반 형태 계측 (VBM)에 비유에서 실행하는 방법입니다 . VBM은 원래 WBSS은 실제 매개 변수의 voxelwise 비교를 사용하는 방법입니다 동안 별도의 검사에 대비 차이가 해결해야 할 콘트라스트 이미지를 실행하는 방법입니다. 알고리즘과 유사하지만 따라서, WBSS 및 VBM을 차별화하는 용어는 다음에 사용됩니다.
분석 방법 : 사전 및 사후 처리
voxelwise 검출로 인해 - - 등방성 또는 이방성 하나, 각각의 복셀에 대한 늘어난 또는 편원 확산 텐서의 결과로 다음과 같은 프로토콜의 작업이 될 수 있습니다 흰색 물질 책자에서 voxelwise 확산 특성을 분석하는 것입니다. 복셀 텐서의 파라미터는 FA-맵의 계산이나 fibertracts의 식별 (그림 1) 중 하나에 사용됩니다.
다음과 같이 분석 결과를 얻기 위해서는 소프트웨어 패키지 텐서 영상 및 섬유 추적 (TIFT) 17를 사용합니다. TIFT은 다음과 같은 요구 사항에 대한 분석 도구를 제공합니다 :
이러한 기능은 하나의 소프트웨어 환경 17,29,30,31에서 다양한 분석 할 수 있습니다. TIFT 소프트웨어는 DTI 데이터 분석의 새로운 옵션을 끊임없이 개발이다.
그림 2에서는 그룹 수준에서 DTI 데이터를 분석하는 두 개의 보완적인 방법으로 공간 정규화 한 후, 마지막으로 그룹 수준에서 적용 샘플 사이의 차이, 건강한 통제 대 등 질병의 두뇌를 얻기 위해 WBSS 의해 TFAS에 의해 모두, 즉 도식 개요를 제공합니다. TFAS는 사전 정의 된 fibertracts를 기반으로하는 반면, 여기 WBSS은 그룹 수준에서의 차이와 지역의 voxelwise 공정한 검출을 목표로, 지역을 시작 TFAS은 어느 자유롭게 선택 될 수있다 또는 WBSS 결과 (`핫스팟`의에서 파생 될 수 크게) FA 변경.
FA-맵의 개별 종 비교 검출하여 수행됩니다아핀 정위 정렬 후 다른 timepoints의 측정 FA-맵에서 팅의 차이 (그림 2).
그림 6은 ALS 환자 대 컨트롤의 뇌를 기반 공간 통계 (WBSS)의 결과를 보여줍니다. 그림 6A는 시상의 감소 FA 값의 로컬 최대를 보여줍니다 coronar 및 축보기 (p <0.01에서 역치 복수를 위해 수정 비교). 그림 6B는 TFAS을위한 기초로 사용 피질 기관의 시작점과 projectional FT를 보여줍니다. 그림 66은 ALS 환자의 샘플과 일치하는 컨트롤 사이의 공간 통계 (WBSS) 기준으로 전체 뇌에서 감지 FA-맵에서 그룹 차이점을 보여줍니다 slicewise 시각화.
1. hyperkinetic 장애 QC 및 환자의 데이터를 응용 프로그램의 손상 그라데이션 방향에 대한 수정
QC의 응용 프로그램과 후속 볼륨 배제 (손상 GD에 대한 수정의 결과로)의 효과에 대한 예를 들어, 그림 8은 29 premanifest 헌팅턴의 질병의 그룹 비교 볼륨 배제와와하지 않고 전체 뇌 기반 공간 통계의 차이점을 보여줍니다 30 나이와 성 대 과목 컨트롤을 일치. 스캔 프로토콜은...
DTI 데이터 간 주제 평균값은 각각 확산 진폭 (FA 정보를 이용하여)과 확산 방향 (FT에 따라)에 대하여 달성 할 수있다. FA 맵의 평균은 WBSS 및 TFAS하여 대상 집단의 통계적 비교를 할 수 있습니다. 이 방법론 프레임 워크는 간 대상 평균화 및 그룹 비교와 DTI 기법에 대한 소개를 제공합니다. 정위 정규화 및 그룹 수준에서 FA지도의 비교 대상 그룹 간의 차이를 정량화하기 위해 여러 가능성을 수 있습니?...
저자는 공개 아무것도 없어.
이 작품의 일부는, QC 및 hyperkinetic 장애 환자의 데이터를 응용 프로그램의 손상 그라데이션 방향에 대한 보정에 대한 연구, 즉 유럽의 HD 네트워크 (EHDN 프로젝트 070)에 의해 지원되었다. 이 특정 연구에서 MRI 검사는 런던 사이트 TRACK-HD 일대의 일환으로 획득 하였다.
Name | Company | Catalog Number | Comments |
MR scanner | Siemens 1.5 T Magnetom Symphony | ||
analysis software | TIFT - Tensor Imaging and Fiber Tracking |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유