JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
* 이 저자들은 동등하게 기여했습니다
This manuscript describes an experimental protocol for evaluating the morphological characteristics and functional status of ribbon synapses in normal mice. The present model is also suitable for noise-induced and age-related cochlear synaptopathy-restricted models. The correlative results of previous mouse studies are also discussed.
Cochlear inner hair cells (IHCs) transmit acoustic signals to spiral ganglion neurons (SGNs) through ribbon synapses. Several experimental studies have indicated that hair cell synapses may be the initial targets in sensorineural hearing loss (SNHL). Such studies have proposed the concept of cochlear "synaptopathy", which refers to alterations in ribbon synapse number, structure, or function that result in abnormal synaptic transmission between IHCs and SGNs. While cochlear synaptopathy is irreversible, it does not affect the hearing threshold. In noise-induced experimental models, restricted damage to IHC synapses in select frequency regions is employed to identify the environmental factors that specifically cause synaptopathy, as well as the physiological consequences of disturbing this inner ear circuit. Here, we present a protocol for analyzing cochlear synaptic morphology and function at a specific frequency region in adult mice. In this protocol, cochlear localization of specific frequency regions is performed using place-frequency maps in conjunction with cochleogram data, following which the morphological characteristics of ribbon synapses are evaluated via synaptic immunostaining. The functional status of ribbon synapses is then determined based on the amplitudes of auditory brainstem response (ABR) wave I. The present report demonstrates that this approach can be used to deepen our understanding of the pathogenesis and mechanisms of synaptic dysfunction in the cochlea, which may aid in the development of novel therapeutic interventions.
Frequencies in the range of approximately 20‒20,000 Hz can be perceived as auditory stimuli by humans. Human hearing is normally most sensitive near 1,000 Hz, where average sound pressure level is 20 μPa in young adults (i.e., 0 decibels of sound pressure level [dB SPL]). In some pathological conditions, hearing loss is restricted to specific frequencies. For example, in the early stages of noise-induced hearing loss (NIHL), a “notch” (i.e., hearing threshold elevation) can be observed in the audiogram at 4 kHz1. Along the mammalian cochlear partition, its gradations of stiffness and mass produce an exponential frequency map, with high-frequency sound detection at the base of the cochlea and low-frequency detection at the apex2. Indeed, there is a cochlear place-frequency map along the basilar membrane, leading to what is known as tonotopic organization2,3. Each given place on the basilar membrane has the highest sensitivity to only one particular sound frequency, which is usually termed the characteristic frequency3,4, although responses to other frequencies can also be observed.
To date, various mouse models have been employed to investigate normal function, pathological processes, and therapeutic efficacy in the auditory system. Precise knowledge of physiological parameters in the mouse cochlea is a prerequisite for such studies of hearing loss. The mouse cochlea is anatomically divided into apical, middle, and basal turns, which correspond to different frequency regions. By labeling auditory nerve afferents at the cochlear nucleus to analyze their corresponding peripheral innervation sites in the cochlea, Müller et al. succeeded in establishing the cochlear place-frequency map in the normal mouse in vivo5. In the interval of 7.2–61.8 kHz, which corresponds to positions between 90% and 10% of the full length of the basilar membrane, the mouse cochlear place-frequency map can be described by a simple linear regression function, suggesting a relation between the normalized distance from the cochlear base and the logarithm of the characteristic frequency5. In laboratory mice, the place-frequency map can be used to explore the relationship between hearing thresholds within specific frequency ranges and cochleograms showing the numbers of missing hair cells in relative regions along the basilar membrane6. Importantly, the place-frequency map provides a positioning system for the investigation of minimal structural damage, such as damage to the ribbon synapses of hair cells at specific cochlear frequency locations in mice with peripheral auditory trauma7,8.
In the mammalian cochlea, ribbon synapses are comprised of a presynaptic ribbon, an electron-dense projection that tethers a halo of release-ready synaptic vesicles containing glutamate within the IHC, and a postsynaptic density on the nerve terminal of the SGN with glutamate receptors9. During cochlear sound transduction, deflection of the hair cell bundle results in IHC depolarization, which leads to glutamate release from IHCs onto the postsynaptic afferent terminals, thereby activating the auditory pathway. Activation of this pathway leads to the transformation of sound-induced mechanical signals into a rate code in the SGN10. Indeed, the IHC ribbon synapse is highly specialized for indefatigable sound transmission at rates of hundreds of Hertz with high temporal precision, and is of critical importance for presynaptic mechanisms of sound encoding. Previous studies have revealed that ribbon synapses vary greatly in size and number at different frequency regions in the adult mouse cochlea11,12, likely reflecting structural adaptation to the particular sound coding for survival needs. Recently, experimental animal studies have demonstrated that cochlear synaptopathy contributes to multiple forms of hearing impairments, including noise-induced hearing loss, age-related hearing loss, and hereditary hearing loss13,14. Thus, methods for identifying correlated changes in synaptic number, structure, and function at specific frequency regions have been increasingly employed in studies of auditory development and inner ear disease, using models generated via experimental manipulation of genetic or environmental variables15,16,17.
In the current report, we present a protocol for analyzing the synaptic number, structure, and function at a specific frequency region of the basilar membrane in adult mice. Cochlear frequency localization is performed using a given place-frequency map in combination with a cochleogram. The normal morphological characteristics of cochlear ribbon synapses are evaluated via presynaptic and postsynaptic immunostaining. The functional status of cochlear ribbon synapses is determined based on the suprathreshold amplitudes of ABR wave I. With minor alterations, this protocol can be used to examine physiological or pathological conditions in other animal models, including rats, guinea pigs, and gerbils.
All procedures were carried out in accordance with the NRC/ILAR Guide for the Care and Use of Laboratory Animals (8th Edition). The study protocol was approved by the Institutional Animal Care and Use Committee of Capital Medical University, Beijing, China.
1. Animal Selection
2. Hearing Assessment
3. Cochlear Tissue Processing
4. Immunofluorescence Staining
5. Morphological Evaluation of Cochlear Ribbon Synapses
6. Functional Evaluation of Cochlear Ribbon Synapses
ABR hearing tests were performed for 10 C57BL/6J mice (8 weeks of age) under anesthesia. ABRs were elicited using tone burst stimuli at 4, 8, 16, 32, and 48 kHz. The hearing threshold of each animal was visually detected by distinguishing at least one clear waveform in the ABR. All mice exhibited ABR thresholds in response to tone bursts, ranging between 25 and 70 dB SPL depending on the frequency of the stimulus. Our results indicated that the hearing threshold was lowest at 16 kHz (Figure 1
Since cochlear synaptopathy was first characterized in adult mice with a temporary threshold shift (TTS) induced by 8‒16 kHz octave band noise at 100 dB SPL for 2 h31, researchers have increasingly investigated the effects of synaptopathy in various mammals, including monkeys and humans32,33. In addition to noise exposure, several other conditions have been associated with cochlear synaptopathy (e.g., aging, the use of ototoxic drugs...
The authors have no conflicts of interest to disclose.
This work was supported by the National Natural Science Foundation of China (81770997, 81771016, 81830030); the joint funding project of Beijing Natural Science Foundation and Beijing Education Committee (KZ201810025040); the Beijing Natural Science Foundation (7174291); and the China Postdoctoral Science Foundation (2016M601067).
Name | Company | Catalog Number | Comments |
Ketamine hydrochloride | Gutian Pharmaceutical Co., Ltd., Fujian, China | H35020148 | 100 mg/kg |
Xylazine hydrochloride | Sigma-Aldrich, St. Louis, MO, USA | X-1251 | 10 mg/kg |
TDT physiology apparatus | Tucker-Davis Technologies, Alachua, FL, USA | Auditory Physiology System III | |
SigGen/BioSig software | Tucker-Davis Technologies, Alachua, FL, USA | Auditory Physiology System III | |
Electric Pad | Pet Fun | 11072931136 | |
Dumont forceps 3# | Fine Science Tools, North Vancouver, B.C., Canada | 0203-3-PO | |
Dumont forceps 5# | Fine Science Tools, North Vancouver, B.C., Canada | 0209-5-PO | |
Stereo dissection microscope | Nikon Corp., Tokyo, Japan | SMZ1270 | |
Goat serum | ZSGB-BIO, Beijing,China | ZLI-9021 | |
Anti-glutamate receptor 2, extracellular, clone 6C4 | Millipore Corp., Billerica, MA, USA | MAB397 | mouse |
Purified Mouse Anti-CtBP2 | BD Biosciences, Billerica, MA, USA | 612044 | mouse |
Alexa Fluor 568 goat anti-mouse IgG1antibody | Thermo Fisher Scientific Inc., Waltham, MA, USA | A21124 | goat |
Alexa Fluor 488 goat anti-mouse IgG2a antibody | Thermo Fisher Scientific Inc., Waltham, MA, USA | A21131 | goat |
Mounting medium containing DAPI | ZSGB-BIO, Beijing,China | ZLI-9557 | |
Confocal fluorescent microscopy | Leica Microsystems, Wetzlar, Germany | TCS SP8 II | |
Image Pro Plus software | Media Cybernetics, Bethesda, MD, USA | version 6.0 | |
Professional diagnostic pocket otoscope | Lude Medical Apparatus and Instruments Trade Co., Ltd., Shanghai,China | HS-OT10 | |
Needle electrode | Friendship Medical Electronics Co., Ltd., Xi'an,China | 1029 | 20 mm, 28 G |
Closed-field speaker | Tucker-Davis Technologies, Alachua, FL, USA | CF1 |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유