Zaloguj się

Pore transport and ion-pair formation are critical mechanisms for the absorption and distribution of drugs in the body.

Pore transport, also known as convective transport, is a process where small molecules like urea, water, and sugars rapidly cross cell membranes as though there were channels or pores in the membrane. Although direct microscopic evidence is limited but the concept of pores or channels is widely accepted based on physiological evidence. Despite the lack of direct microscopic evidence of such pores, this model explains renal drug excretion and hepatic drug uptake. Transport proteins may form an open channel across the cell's lipid membrane, facilitating faster diffusion of small molecules, including drugs, compared to other parts of the membrane.

On the other hand, ion-pair formation involves the binding of oppositely charged ions to form a neutral complex. The strong electrolyte drugs maintain their charge at all physiological pH values and penetrate membranes poorly. However, when paired with an oppositely charged ion, a neutral ion pair forms, which diffuses more easily across the membrane. Examples include propranolol, which forms an ion pair with oleic acid, and quinine, which pairs with hexyl salicylate.

The use of ion pairs has intriguing applications, such as the complexation of amphotericin B and DSPG in certain amphotericin B/liposomal products. Here, ion pairing can transiently alter distribution, reduce high plasma-free drug concentration, and decrease renal toxicity.

Z rozdziału 3:

article

Now Playing

3.10 : Pore Transport and Ion-Pair Transport

Pharmacokinetics: Drug Absorption

267 Wyświetleń

article

3.1 : Drug Administration and Therapy Phases: Overview

Pharmacokinetics: Drug Absorption

350 Wyświetleń

article

3.2 : Drug Absorption: Overview

Pharmacokinetics: Drug Absorption

409 Wyświetleń

article

3.3 : Drug Delivery: Overview

Pharmacokinetics: Drug Absorption

225 Wyświetleń

article

3.4 : Drug Delivery: Enteral Route

Pharmacokinetics: Drug Absorption

296 Wyświetleń

article

3.5 : Drug Delivery: Parenteral Route

Pharmacokinetics: Drug Absorption

297 Wyświetleń

article

3.6 : Drug Delivery: Miscellaneous Routes

Pharmacokinetics: Drug Absorption

258 Wyświetleń

article

3.7 : Cellular Membranes and Drug Transport

Pharmacokinetics: Drug Absorption

201 Wyświetleń

article

3.8 : Mechanisms of Drug Absorption: Paracellular, Transcellular, and Vesicular Transport

Pharmacokinetics: Drug Absorption

267 Wyświetleń

article

3.9 : Passive Diffusion: Overview and Kinetics

Pharmacokinetics: Drug Absorption

245 Wyświetleń

article

3.11 : Carrier-Mediated Transport

Pharmacokinetics: Drug Absorption

177 Wyświetleń

article

3.12 : Facilitated Diffusion

Pharmacokinetics: Drug Absorption

225 Wyświetleń

article

3.13 : Active Transport

Pharmacokinetics: Drug Absorption

298 Wyświetleń

article

3.14 : Vesicular Trasport: Endocytosis, Transcytosis and Exocytosis

Pharmacokinetics: Drug Absorption

479 Wyświetleń

article

3.15 : Factors Influencing Drug Absorption: Anatomical Parameters

Pharmacokinetics: Drug Absorption

133 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone