Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The present protocol describes a novel method of identifying a population of enucleating orthochromatic erythroblasts by multi-spectral imaging flow cytometry, providing a visualization of the erythroblast enucleation process.
Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis.
We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters “aspect ratio” of a cell in the bright-field channel that aids in the recognition of elongated cells and “delta centroid XY Ter119/Draq5” that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.
Terminal differentiation within the erythroid lineage in mammals concludes with the dramatic process of enucleation, through which the orthochromatic erythroblast expels its membrane-encased nucleus (pyrenocyte)1, generating a reticulocyte2. The exact mechanism of this process, which is also the rate-limiting step of successful, large-scale, production of red blood cells in vitro, is not yet fully elucidated. The localization of key proteins and structures within enucleating erythroblasts relies on the use of fluorescent and electron microscopy3-5. This tedious process typically results in the identification of a limited number of enucleation events and does not always allow meaningful statistical analysis. Expanding on a method of erythroblast identification described previously by McGrath et al.6, we have developed a novel approach of identifying and studying enucleation events by Multi-Spectral Imaging Flow Cytometry (multiparameter high-speed cell imaging in flow, a method that combines fluorescent microscopy with flow cytometry)7, which can provide a sufficient number of observations to obtain measurements and perform statistical analysis.
Here, we describe first two in vitro erythropoiesis culture methods used in order to synchronize erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry.
Samples are run on an imaging flow cytometer and the collected cells are gated appropriately to identify orthochromatic erythroblasts6. Orthochromatic erythroblasts are then analyzed based on their aspect ratio, as measured in brightfield imaging, versus their value for the parameter delta centroid XY Ter119-DNA, which is defined as the distance between the centers of the areas stained for Ter119 and DNA, respectively. The population of cells with low aspect ratio and high delta centroid XY Ter119/DNA is highly enriched in enucleating cells. Using wild-type (WT) erythroblasts versus erythroblasts with Mx-Cre mediated conditional deletion of Rac1 on Rac2-/- or combined Rac2-/-; Rac3-/- genetic background and this novel analysis protocol of multi-spectral imaging flow cytometry, we recently demonstrated that enucleation resembles asymmetric cytokinesis and that the formation of an actomyosin ring regulated in part by Rac GTPases is important for enucleation progression7.
Access restricted. Please log in or start a trial to view this content.
1. Long-term In vitro Erythropoiesis Culture (Ex vivo Erythroid Differentiation Culture Protocol by Giarratana et al.8, Modified and Adapted for Mouse Cells)
This is a 3-step long-term in vitro erythropoiesis protocol. In the first step (days 0-4) 2 x 105 cells/ml are placed in erythroblast growth medium supplemented with stem cell factor (SCF), interleukin-3 (IL-3), and erythropoietin (Epo). In the second step (days 5-6), cells are resuspended at 2 x 105 cells/ml and co-cultured on adherent stroma cells (MS5) in fresh erythroblast growth medium supplemented only with Epo. In the third step (days 7-9), cells are cultured on a layer of MS-5 cells in fresh erythroblast growth medium without cytokines up to enucleation (Figure 1A).
All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of Cincinnati Children’s Hospital Medical Center.
2. Fast Enucleation Assay, According to the Protocol Described by Yoshida et al.12 with Modifications (Figure 1B)
3. Staining of Erythroblasts for Localization of Intracellular Proteins or Lipid Rafts During Enucleation by Multi-spectral Imaging Flow Cytometry
Access restricted. Please log in or start a trial to view this content.
First, cells are analyzed based on their Brightfield Aspect Ratio (the ratio of the length of their minor versus their major axis) and their Brightfield Area (indicative of their size). Events with a Brightfield Area value lower than 20 and higher than 200 are mostly debris and cell aggregates, respectively, and are excluded from the analysis (Figure 2A). Single cells (gate “R1”) are then analyzed based on their value for the Gradient RMS parameter, which indicates sharpness of image. Gate &#...
Access restricted. Please log in or start a trial to view this content.
In recent years the study of erythroblast enucleation has gained increasing momentum since it is the step in in vitro erythropoiesis cultures that is most difficult to reproduce efficiently in order to achieve successful, large-scale production of red blood cells ex vivo. Up until recently, the study of erythroblast enucleation utilized mainly fluorescence microscopy and flow cytometry methods. Fluorescence microscopy methods, albeit helpful in identifying participating molecules, require...
Access restricted. Please log in or start a trial to view this content.
The authors declare no competing financial interests.
The authors thank the Research Flow Cytometry Core at Cincinnati Children’s Hospital Research Foundation and Richard Demarco, Sherree Friend, and Scott Mordecai from the Amnis Corporation (part of EMD Milllipore) for expert technical support. This work was supported by the National Institutes of Health grants K08HL088126 and R01HL116352 (T.A.K.) and P30 DK090971 (Y.Z.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
αMEM medium | CellGro | 15-012-CV | |
IMDM medium | Hyclone (Thermo Scientific) | SH30228.01 | |
Stempro-34 SFM | GIBCO (Life Tech) | 10640 | |
Stempro-34 nutrient supplement | GIBCO (Life Tech) | 10641-025 | |
Fetal Bovine Serum (FBS) | Atlanta Biologicals | 512450 | |
BIT9500 | Stemcell Technologies | 09500 | |
Bovine Serum Albumin (BSA) | Fisher Scientific | BP-1600-100 | |
Phosphate buffered saline (PBS) | Hyclone (Thermo Scientific) | SH30028.02 | |
Penicillin/Streptomycin | Hyclone (Thermo Scientific) | SV30010 | |
L-glutamine | Hyclone (Thermo Scientific) | SH30590.01 | |
Isothesia (Isoflurane) | Butler-Schein | 029405 | |
Histopaque 1.083 mg/ml | Sigma | 10831 | |
BD Pharmlyse (RBC lysis buffer) | BD Biosciences | 555899 | |
Acetone | Sigma-Aldrich | 534064 | |
Formaldehyde | Fisher Scientific | BP 531-500 | |
Hydrocortisone | Sigma | H4001 | |
Stem Cell Factor (SCF) | Peprotech | 250-03 | |
Interleukin-3 (IL-3) | Peprotech | 213-13 | |
EPOGEN Epoetin Alfa (Erythropoietin, EPO) | AMGEN | available by pharmacy | |
CD44-FITC antibody | BD Pharmingen | 553133 | |
CD71-FITC antibody | BD Pharmingen | 553266 | |
Ter119-PECy7 antibody | BD Pharmingen | 557853 | |
Phalloidin-AF488 | Invitrogen (Life Technologies) | A12379 | |
β-tubulin-AF488 antibody | Cell Signaling | #3623 | |
anti-rabbit AF488-secondary antibody | Invitrogen (Life Technologies) | A11008 | |
anti-rabbit AF555-secondary antibody | Invitrogen (Life Technologies) | A21428 | |
AF594-cholera toxin B subunit | Invitrogen (Life Technologies) | C34777 | |
pMRLC (Ser19) antibody | Cell Signaling | #3671 | |
γ-tubulin antibody | Sigma | T-3559 | |
Syto16 | Invitrogen (Life Technologies) | S7578 | |
Draq5 | Biostatus | DR50200 | |
Ferrous sulfate | Sigma | F7002 | |
Ferric nitrate | Sigma | F3002 | |
EDTA | Fisher Scientific | BP120500 | |
15-ml tubes | BD Falcon | 352099 | |
50-ml tubes | BD Falcon | 352098 | |
6-well plates | BD Falcon | 353046 | |
24-well plates | BD Falcon | 351147 | |
Flow tubes | BD Falcon | 352008 | |
Tuberculin syringe | BD | 309602 | |
Insulin syringe | BD | 329461 | |
Syringe needle 25-G 5/8 | BD | 305122 | |
Capped flow tubes | BD | 352058 | |
40-μm cell strainer | BD Falcon | 352340 | |
Scalpel (disposable) | Feather | 2975#21 | |
FACS Canto Flow Cytometer | BD | ||
ImagestreamX Mark II Imaging Flow Cytometer | AMNIS (EMD Millipore) | ||
Image Data Exploration and Analysis Software (IDEAS) version 4.0 and up. | AMNIS (EMD Millipore) | ||
Hemavet 950 Cell Counter | Drew Scientific | CDC-9950-002 | |
NAPCO series 8000WJ Incubator | Thermo scientific | ||
Allegra X-15R Centrifuge | Beckman Coulter | 392932 | |
Mini Mouse Bench centrifuge | Denville | C0801 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone