Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Electron spectroscopic imaging can image and distinguish nucleic acid from protein at nanometer resolution. It can be combined with the miniSOG system, which is able to specifically label tagged proteins in transmission electron microscopy samples. We illustrate the use of these technologies using double-strand break repair foci as an example.
The limits to optical resolution and the challenge of identifying specific protein populations in transmission electron microscopy have been obstacles in cell biology. Many phenomena cannot be explained by in vitro analysis in simplified systems and need additional structural information in situ, particularly in the range between 1 nm and 0.1 µm, in order to be fully understood. Here, electron spectroscopic imaging, a transmission electron microscopy technique that allows simultaneous mapping of the distribution of proteins and nucleic acids, and an expression tag, miniSOG, are combined to study the structure and organization of DNA double-strand break repair foci.
Despite the significant advancements in light microscopy over recent years1, cell-biologists still suffer from a gap in resolution. This limits understanding of the structure-function relationships in fundamental cellular processes that involve the coordinated interplay between macromolecular complexes (e.g., in chromatin remodelling, DNA repair, RNA transcription and DNA replication). Although transmission electron microscopes (TEM)s provide the required resolution, it has been challenging to define these processes structurally because of the inability to label specific proteins while also being able to determine the biochemical composition of the visualized structures. In the absence of internal membranes to help differentiate nuclear structures, the nucleus has been particularly challenging. Electron spectroscopic imaging (ESI) solves some of these limitations by allowing the simultaneous detection and differentiation of DNA, RNA, and protein-based nuclear structures2-5.
Electron spectroscopic imaging:
In order to map elemental distributions at high sensitivity and resolution in the electron microscope, one can use an imaging spectrometer that selects electrons that have been inelastically scattered through interactions with inner shell electrons of an element in the specimen6. Because element-specific amounts of energy are lost as a consequence of ionization of atoms in the specimen, these electrons can be separated and visualized using a spectrometer that is attached to the electron microscope. Thus, analysis of the spectrum of the electrons that have interacted with the specimen reveals qualitative and quantitative information about the elemental composition of the sample7. Electrons that do not lose energy when passing through the specimen are found in the “zero-loss peak” of the electron energy loss spectrum. The abundance of these electrons is related to the mass, density and thickness of the specimen and is comprised of electrons that pass through the specimen without colliding with the specimen or losing energy during passage through the specimen. This information can be useful for absolute quantification of the numbers of atoms of a specific element present in the specimen8.
Since biological samples consist mostly of light elements that poorly deflect the electrons in the incident beam of the TEM, staining methods using heavy metal salts have to be applied in order to generate contrast in the sample. The lack of specificity of most of these contrasting agents and the inability to visualize more than one stain where specificity is possible has limited the value of conventional electron microscopy in the study of the nucleus. ESI has significant advantages over conventional TEM, particularly for the study of structures of the cell nucleus. It is possible to exploit the phosphorus-rich nature of DNA- and RNA-containing macromolecular complexes to distinguish nucleoprotein complexes from protein complexes and to resolve different nucleoprotein complexes based on their density of nucleic acids. The remaining biological material can be imaged based on its abundance of nitrogen. Mapping just these two elements and analysis of their distribution and relative abundance within different anatomical structures provides us with a lot of information about the nucleus. For example, it is easy to identify chromatin and the ribosomes in the map representing phosphorus abundance. The interchromatin space, nuclear pore complexes, and nuclear bodies, on the other hand, can be easily detected in the nitrogen map image.
Mini singlet oxygen generator system (miniSOG)
While ESI represents a powerful technique to study in situ chromatin structure because it takes advantage of the characteristic ratios in elemental composition between phosphorus and nitrogen, the elemental composition cannot normally be used to discriminate between different populations of protein complexes. Antibodies labeled with small gold particles in the nanometer range have been widely used to map the location of individual molecules. Since the gold particle is usually attached to a secondary antibody, it will appear within a circumference of approximately 20 nm around the epitope detected by the primary antibody. In post-embedding samples, antibodies can only detect the epitopes that are exposed at the surface of the sections. While it is possible to prove the presence of an antigen and relate it to a certain anatomical structure of the cell, the information that is obtained is incomplete, since most of the epitopes are obscured by resin. Pre-embedding techniques, which use similar protocols to those used for fluorescence microscopy, allow access to antigens throughout the entire depth of the sample but the permeabilization steps that are required to allow the antibody to penetrate the cell typically require removal of lipid membranes and remove components that cannot be fixed by aldehydes. Moreover, the preferred aldehyde fixative for ultrastructure preservation, glutaraldehyde, commonly destroys epitopes and, consequently, paraformaldehyde is typically required. This is less effective at protein-protein crosslinking. Another disadvantage of antibodies that are labeled with a gold nanoparticle is that gold is a very electron-dense material that creates a strong contrast that can obscure interesting structural details of the sample, which has weaker contrast.
The emergence of the green fluorescent protein (GFP) as an expressed protein tag has transformed the use of fluorescence microscopy to answer questions in cell biology. Tagging a protein with a small fluorescent domain allows mapping of its distribution in vivo without the need for permeabilization procedures that can alter the structure. In order to translate the elegant principle of using protein tags to map protein distributions in a cell to electron microscopy, a system was needed that is able to produce a signal close to the structure of interest and generate contrast in the TEM. Polymerized diaminobenzidine is a stain that is often used in histology to detect antibody binding. This stain is usually deposited using horseradish peroxidase (HRP) conjugated to a secondary antibody. Although the reaction produces a reliable result, HRP is not catalytically active in the cytosol of cells9. The reaction products of HRP can also diffuse away from the site of generation so that their resolution is worse than the nanogold method10. In order to bypass these problems, the FlAsH/ReAsH system was developed11. It consists of recombinant fusion proteins that possess a tetracysteine motif. This motif allows binding of a biarsenic fluorophore. When excited, the bound FlAsH or ReAsH is able to generate the highly reactive singlet oxygen and thus photoconvert diaminobenzidine (DAB) into a polymer that precipitates immediately at the site of the tagged proteins. The DAB polymer can be stained with osmium tetroxide, which is electron dense and thus can be used to map the distribution of the recombinant fusion protein in the TEM.
In 2011, Shu et al.10 presented the miniSOG system, which consists of a small 106 amino acids fusion tag derived from a flavoprotein of Arabidopsis that is fluorescent and able to create many singlet oxygen radicals when excited with 448 nm blue light. Those singlet oxygen radicals can be used to photo-oxidize diaminobenzidine to form polymers on and near the surface of the tagged protein, which is considerably closer than immunogold labeled antibodies11. While the FlAsH/ReAsH system requires bringing the fluorochrome and the diaminobenzidine into the cells before doing the photoconversion, the miniSOG system only requires diaminobenzidine and light and in addition is about twice as effective at polymerizing diaminobenzidine. Here, miniSOG is employed in combination with ESI in order to map the ultrastructure of DNA repair foci.
DNA repair foci (DRF)
Unrepaired DNA double strand breaks pose a serious threat to the cell since they can lead to translocations and loss of genetic information. In turn, this can lead to senescence, cancer, and cell death. Many proteins that are involved in DNA double strand break repair accumulate in foci that assemble around a DNA double strand break12-14. Although their function is not known, they represent the site in the nucleus that contains the DNA double strand break and is the site of DNA double strand break repair.
DNA repair foci (DRF) have been characterized by fluorescence microscopy and they serve as biomarkers for DNA damage12,15. They are massive relative to the size of the double-strand break and were considered relatively homogeneous until recent super-resolution microscopy studies revealed some evidence of sub-compartmentalization of molecules within each focus16. In order to understand how these sites are organized, it is necessary to visualize all of the underlying biological structures relative to each other. This cannot be achieved by fluorescence microscopy but is possible through electron microscopy17,18. Here, a method is described that combines electron spectroscopic imaging with the miniSOG method to illustrate the potential of this combined approach to explore the ultrastructure of DNA double-strand break repair.
1. Generation of miniSOG Cell-lines
2. Cell Culture
3. DNA Damage Induction
4. Sample Preparation
5. Electron Microscopy
6. Image Processing
ESI
Comparing the ESI images of the nucleus (Figure 1) with the conventional TEM images (e.g., Figure 7-1) reveals a dramatic increase in anatomical structures that can be easily distinguished. The chromatin ridges appear in yellow and it is quite easy to identify the chromocenters in mouse cells. Nucleoli can easily be distinguished from chromatin by their round structure and different color, since the pre-assembled ribosomes al...
ESI can serve as an excellent tool for examining different states of chromatin and ribonucleoproteins in the nucleus because it is able to specifically map areas that are rich in phosphorus. It profoundly augments the amount of detail that can be obtained by an electron microscope and is not dependent on nonspecific contrasting methods. One disadvantage of ESI is that it requires thinner sections than conventional TEM at the same accelerating voltage. This can be overcome by working with serial sections or using tomograp...
The authors have nothing to disclose.
We thank Dr. Roger Tsien for providing us with the miniSOG constructs. Dr. Xuejun Sun for help with the TEM. Lisa Lem, and Peter Shipple from the Cross Cancer Institute for supplying oxygen. Hilmar Strickfaden holds a postdoctoral fellowship by the Alberta Cancer foundation and was supported by the Bayrische Forschungsallianz. This work was supported by grants from the Canadian Institutes of Health Research and Alberta Cancer Foundation.
Name | Company | Catalog Number | Comments |
35 mm glass bottom dishes | MatTek | P35G-1.5-14-C | |
Gridded 35 mm glass bottom dishes | MatTek | P35G-2-14-CGRD | not made for immersion objectives |
LR White: acryl resin | emsdiasum | 14381 | |
LR White accelerator | emsdiasum | 14385 | |
3,3′-Diaminobenzidine tetrahydrochloride 10 mg tablets | Sigma | D5905 | |
Slim Bar Grids 300 Mesh | SPI | 1161123 | |
Tungsten-Point Lab Pen | emsdiasum | 41148 | |
Osmium Tetroxide | emsdiasum | 19100 | |
Carbon Coater 208 carbon | Cressington | ||
Ultra microtome Leica EM UC6 | Leica | ||
Photoshop CS5 | Adobe | might even work with older versions | |
Digital Micrograph V.2.30 | Gatan | might even work with older versions | |
Hoechst 33342 | Sigma | H-1399 | |
Effectene | Quiagen | ||
MiniSOG-Constructs | Tsien-Lab | tsienlab@yahoo.com | |
MDC1 miniSOG mCherry | |||
53BP1 miniSOG mCherry | |||
Rad52 miniSOG mCherry | |||
cesium 137 radiation source "MARK 1" | (J.L. Shepherd & Associated) | ||
ImageJ/FiJi | open source | http://fiji.sc/Fiji | |
2 ml Eppendorf tubes | Fisherbrand | 05-408-146 | |
Diamond Knife ultra 35° | Diatome | ||
Trimming Knife ultratrim | Diatome | ||
Sodium cacodylate trihydrate | emsdiasum | 12300 | Caution Toxic! |
Glutaraldehyde EM Grade 8% | emsdiasum | 16020 | Caution Toxic! |
Sodium phosphate dibasic | emsdiasum | 21180 | |
Sodium phosphate monobasic | emsdiasum | 21190 | |
Paraformaldehyde | emsdiasum | 19202 | |
Osmium tetroxide 4% solution | emsdiasum | 19150 | |
Inverted Fluorescence Micoscope Axiovert 200M | Zeiss | ||
Hydrochloric Acid | Fisherbrand | A142-212 | |
Sodium Hydroxide Solution 10M | Fluka | 72068 | |
Oxygen | Medigas | ||
3-Amino-1,2,4-triazole | Sigma | A8056 | |
Potassium cyanide | Sigma | 207810 | Caution Toxic! |
Ethanol | emsdiasum | 15058 | Caution Toxic! |
Razor blade Single Edge Carbon Steel | emsdiasum | 71960 | Caution Sharp! |
DMEM | Sigma | D 5546 | |
FBS | Life Technologies | 16000-044 | |
G418 | Life Technologies | 11811-023 | |
DMSO | Sigma | D2650 | |
Transmission Electron Microscope 200 kV | JEOL | 2100 | |
GIF Tridiem 863 Energy filter | Gatan |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone