Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Microbial populations contain substantial cell heterogeneity, which can dictate overall behavior. Molecular probe analysis through flow cytometry can determine physiological states of cells, however its application varies between species. This study provides a protocol to accurately determine cell mortality within a cyanobacterium population, without underestimating or recording false positive results.
Microbial subpopulations in field and laboratory studies have been shown to display high heterogeneity in morphological and physiological parameters. Determining the real time state of a microbial cell goes beyond live or dead categories, as microbes can exist in a dormant state, whereby cell division and metabolic activities are reduced. Given the need for detection and quantification of microbes, flow cytometry (FCM) with molecular probes provides a rapid and accurate method to help determine overall population viability. By using SYTOX Green and SYTOX Orange in the model cyanobacteria Microcystis aeruginosa to detect membrane integrity, we develop a transferable method for rapid indication of single cell mortality. The molecular probes used within this journal will be referred to as green or orange nucleic acid probes respectively (although there are other products with similar excitation and emission wavelengths that have a comparable modes of action, we specifically refer to the fore mentioned probes). Protocols using molecular probes vary between species, differing principally in concentration and incubation times. Following this protocol set out on M.aeruginosa the green nucleic acid probe was optimized at concentrations of 0.5 µM after 30 min of incubation and the orange nucleic acid probe at 1 µM after 10 min. In both probes concentrations less than the stated optimal led to an under reporting of cells with membrane damage. Conversely, 5 µM concentrations and higher in both probes exhibited a type of non-specific staining, whereby 'live' cells produced a target fluorescence, leading to an over representation of 'non-viable' cell numbers. The positive controls (heat-killed) provided testable dead biomass, although the appropriateness of control generation remains subject to debate. By demonstrating a logical sequence of steps for optimizing the green and orange nucleic acid probes we demonstrate how to create a protocol that can be used to analyse cyanobacterial physiological state effectively.
The cell is a complex system, which constantly responds to the environment by modifying physiological parameters and altering its function. The population dynamics of isogenic microbial populations both in nature and the laboratory are affected by the development of subpopulations, occurring even under relatively constant environmental conditions1-3. The variability of natural microbial communities arises due to the highly variable nature of environmental conditions. These sometimes stochastic processes subsequently produce subpopulations that are very different to the population average. Recent evidence has revealed that these physiological subpopulations respond differently to environmental conditions and can produce signal compounds or inhibitors that dramatically affect and influence the overall population3,4.
Establishing a method to define heterogeneity within a population is key to understanding the ecology of microbes in various environments and is essential when building knowledge of nuisance cyanobacteria, such as the toxic Microcystis, which impacts heavily on human water security. Species such as Anabaena display morphological heterogeneity in response to environmental fluctuations, developing specialised cells like heterocysts and akinetes2. In contrast, Microcystis cells do not display obvious morphological heterogeneity during a stress response. The discrimination between viable and non-viable cells is the most important aspect of physiological differentiation and allows a better understanding of microbial population dynamics. However, the conceptual problem of bacterial viability itself remains difficult and poorly characterised1,5,6.
Flow cytometry (FCM) is a reliable and rapid method of analysing individual cells. To increase the understanding of single cell physiology through FCM, molecular probes have been used to distinguish a number of metabolic and biochemical processes7. This has led to increased knowledge of species on a cellular and population level and in turn helped water resource management8,9. However, organisms differ in terms of molecular probe uptake and efflux due to the pores and pumps in cellular walls and membranes, which have led to a number of molecular probe design and protocol implementation6,10,11. Molecular probes available for commercial and research purposes are often supplied with a generic protocol which may be applicable to a very different cell type. One must be very cautious in transferring protocols developed for one cell type to another6, it is therefore an essential task to optimize molecular probes effectively before use.
The green and orange nucleic acid probes bind to both double and single stranded nucleic acids with minimal base selectivity and are used to assess the plasma membrane integrity of cells. The green nucleic acid probe has a markedly improved cell labelling fluorescence signal compared to other molecular probes, such as propidium iodide-based compounds12, which can also act as an indicator of cell viability. The term 'cell viability' here assumes that DNA degradation occurs after the loss of plasma membrane integrity. The nucleic acid probes are unsymmetrical cyanine dyes with three positive charges and cannot enter cells with intact membranes under characterised concentrations, in both eukaryotic11,13 and prokaryotic14,15 organisms. The binding of a nucleic acid probe to nucleic acids can result in up to a >500 fold increase of fluorescence emissions from endogenous signals in cells that have their membrane integrity compromised. Although molecular probes such as the green nucleic acid probe can be a good indicator of single cell physiology, there is a need to optimize each probe with the intended target organism, as incubation times have varied from 7 min - 30 min and concentration ranges from 0.1 µM - 0.5 µM in Microcystis experiments alone15-19.
Here we present a protocol to optimize the cytometric assays of green and the relatively new orange nucleic acid probes (which to date not been tested on the cyanobacterial species M.aeruginosa). The following developed methodology can then be transferred to other species and used as a platform for optimizing protocols in other molecular probes, thereby increasing the understanding of microbes and their ecological behavior.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of the Molecular Probe and Flow Cytometer
2. Preparation of Cultures and Initial Cell Counts
3. Optimization of Molecular Probe Cell Uptake
4. Molecular Probe Fluorescence Discrimination
Access restricted. Please log in or start a trial to view this content.
Forward light scatter (FSC) and side light scatter (SSC) outputs from an M.aeruginosa batch culture in exponential phase provides information on cell size (diameter) and internal granularity respectively (Figure 1A). FSC can discriminate cells that are too large and / or small to be M.aeruginosa. This discrimination or gating can be done by refining data between certain points of a FSC output (Figure 1C). Phycocyanin, a major constitutio...
Access restricted. Please log in or start a trial to view this content.
The increased numbers of publications using molecular probes indicates that reliable and informative data can be obtained5,6,8-15,19,22,23. As of yet there is no perfect stain for cell viability that can be effective across all species with the same concentration and incubation time6,10. Even the same type of probe with altered fluorescence emissions shows a need to establish the correct concentration and incubation time (Tables 1 & 3). As seen when using t...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
The authors would like to acknowledge PhD student Dave Hartnell and Bournemouth University for support and funding for the research and facilities.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Cyanobacteria Media | Sigma-Aldrich | C3061-500ML | BG-11 Freshwater concentrated solution (x50 dilution) |
Decontamination Fluid | BD Biosciences | 653155 | Run for 2 min when outputs are more than 12 events per second on fast or a flow rate of 66 µl/min. Followed by 2 min of sheath H2O. |
Flow Cytometer | BD Biosciences | by request | BD Accuri C6 |
SYTOX Green | Life Technologies | S7020 | Nucleic acid stain – 5 mM solution in DMSO |
SYTOX Orange | Life Technologies | S11368 | Nucleic acid stain – 5 mM solution in DMSO |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone