Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A fine tuning regulation of gene transcription underlies embryonic cell fate decision. Herein, we describe chromatin immunoprecipitation assays used to investigate epigenetic regulation of both cardiac differentiation of stem cells and cardiac development of mouse embryos.
Specific gene transcription is a key biological process that underlies cell fate decision during embryonic development. The biological process is mediated by transcription factors which bind genomic regulatory regions including enhancers and promoters of cardiac constitutive genes. DNA is wrapped around histones that are subjected to chemical modifications. Modifications of histones further lead to repressed, activated or poised gene transcription, thus bringing another level of fine tuning regulation of gene transcription. Embryonic Stem cells (ES cells) recapitulate within embryoid bodies (i.e., cell aggregates) or in 2D culture the early steps of cardiac development. They provide in principle enough material for chromatin immunoprecipitation (ChIP), a technology broadly used to identify gene regulatory regions. Furthermore, human ES cells represent a human cell model of cardiogenesis. At later stages of development, mouse embryonic tissues allow for investigating specific epigenetic landscapes required for determination of cell identity. Herein, we describe protocols of ChIP, sequential ChIP followed by PCR or ChIP-sequencing using ES cells, embryoid bodies and cardiac specific embryonic regions. These protocols allow to investigating the epigenetic regulation of cardiac gene transcription.
The heart is the first organ to be formed and to become functional in the embryo. The heart is built from many cell lineages that arise from the first and second embryonic heart fields1. From the post-fertilization blastocyst stage up to the shaped heart, embryonic cells have thus to make many cell fate decisions. Gene transcription is regulated in a time- and space-dependent manner and is a key biological process that underlies cell fate decision during embryonic development. Such a process is mediated by specific transcription factors which bind regulatory regions within the genome including enhancers and promoters of cardiac constitutive genes. DNA is wrapped around histones that are subjected to modifications such as acetylation, methylation, ubiquitinylation, and/or phosphorylation. Histone modification leads to repressed, activated or poised gene transcription depending upon which lysine residue of histone is modified2.
Chromatin immunoprecipitation assay (ChIP) has been set up years ago3 and is currently the most broadly used technology in order to identify targets of either modified histones or transcription factors4. Following immunoprecipitation of histones or transcription factors, bound DNA can be either amplified by polymerase chain reaction (PCR) or sequenced. ChIP has technically overcome more challenging gel retardation assays5. However ChIP does not imply direct binding of a transcription factor to DNA, an advantage of gel retardation assay. On the other hand, ChIP combined to DNA sequencing has opened a new genome-wide perspective on gene regulation.
ES cells (ES cells) recapitulate within embryoid bodies (i.e., cell aggregates) or in 2D culture the early steps of cardiac development6 and provide in principle enough material for ChIP. Furthermore, human ES cells represent a human cell model of cardiogenesis although their cardiogenic potential depends upon their epigenetic signature7. At later stages of development, mouse embryonic tissues allow for investigating specific epigenetic landscapes required for determination of cell identity. However, the genome is transcribed in a time- and cell type-specific manner8. Epigenetic regulation of gene transcription has to be studied within localized regions. Herein, we describe protocols of ChIP, sequential ChIP followed by PCR or sequencing using ES cells, embryoid bodies and cardiac specific embryonic regions. These protocols allow to investigating the epigenetic regulation of cardiac gene transcription.
1. DNA-protein Cross-linking
2. Cell Lysis and Chromatin Fragmentation
Buffer | Utilization | Composition | Materials | |||
A | Permeabilization | PB1 : 5 mM PIPES pH 8; 85 mM KCl; 0.5 % NP40 | All | |||
PB2 : 15 mM HEPES pH 7.6, 15 mM NaCl, 4 mM MgCl2 60 mM KCl, 0.5% TRITON X-100 | Embryonic tissue | |||||
B | Lysis /Sonication | SB1: 1 % SDS; 10 mM EDTA; 50 mM Tris-HCl pH 8 | ESC | |||
SB2: 50 mM HEPES-KOH pH7.9 ; 140 mM; 1mM EDTA; 0.1% deoxycholate; 0.1 % SDS | EBs | |||||
SB3:15 mM HEPES pH7.6, 15 mM NaCl ; 60 mM KCl, 1mM EDTA, 0.5 mM EGTA ; 1% TRITON-X100, 0 .1% SDS , 0.5% laurylsarcosine | Embryonic tissue | |||||
C | ChIP buffer | 150 mM NaCl ; 50 mM Tris-HCl pH 7.5 ; 5 mM EDTA ; 0.5 % NP40 ; 1% TRITON-X100 . | All | |||
D | DNA/protein Elution | D1 : 1 % SDS; 100 mM NaHCO3 D2: 50 mM Tris pH 7.6 /5 mM EDTA, 15 mM DTT, 2% SDS | ||||
E | DNA binding beads preparation | E : 20 % PEG 8000; 2.5 M NaCl; 10 mM Tris-HCl pH 8; 1mM EDTA |
Table 1. ChIP buffers.
Material | Sonication program |
Embryonic stem cells | 15 cycles of 30 sec ON and 30 sec OFF |
Embryoid bodies | 30 cycles of 30 sec ON and 30 sec OFF |
Embryonic tissues | 21 cycles of 30 sec ON and 30 sec OFF |
Table 2. Sonication Programs.
3. Immunoprecipitation and Washes
Standard | concentration (ng/µl) | Volume (µl) | Total DNA concentration (ng) |
A | 10.0 | 1 | 10.0 |
B | 5.00 | 1 | 5.00 |
C | 2.50 | 1 | 2.50 |
D | 1.25 | 1 | 1.25 |
E | 0.625 | 1 | 0.625 |
F | 0.3125 | 1 | 0.3125 |
G | 0.156 | 1 | 0.156 |
H | 0.0 | 1 | 0.0 |
Table 3. Standards concentrations.
4. DNA Elution, Cross-link Reversal and Proteinase K Digestion
5. DNA Isolation Using DNA-binding Beads
6. DNA Quantification Using a Fluorescence Detection Instrument
7. PCR
Figure 1A illustrates first the preparation of DNA-binding beads and quality control using DNA of different sizes (1 kb ladder). 0ne, 2 and 2.5 volumes (1 to 3) of beads was added to one volume of the sample to purify high and low molecular size DNA fragments.
Figures 1 B,C,D are typical examples of DNA gels from whole sonicated DNA extracted from mouse ES cells, embryoid bodies or a cardiac emb...
Epigenetics has become an important field of research in developmental biology. How a genetic program is activated in embryonic cells to allow the cells to acquiring a specific identity within an embryonic lineage has been for long time a key question for developmental biologists.
ChIP has been broadly used within the last years and combined to DNA sequencing following improvement in resolution of sequencing. This has become a powerful technique in order to investigate in a genome wide depende...
The authors have nothing to disclose.
The authors acknowledge funding agencies, the IMI StemBANCC European community programme, the leducq Foundation (SHAPEHEART) and the Agence Nationale de la Recherche (Genopath)
Name | Company | Catalog Number | Comments |
Formaldehyde | Sigma | F8775 | Cell Fixation |
Glycine | Sigma | G8898 | Cross-link stop |
Aprotinin | Fluka | 10820 | Proteases inhibitor |
Leupeptin hemisulfate | Sigma | L2882 | Proteases inhibitor |
PMSF | Sigma | P7626 | Proteases inhibitor |
Protein A magnetic beads | Life technologies | 10001D | Immunoprecipitation |
SPRI magnetic beads | Thermo Scientific | 15002-01 | DNA purification |
Proteinase K | Life technologies | 25530-015 | Protein digestion |
DNA BR standard | Life technologies | Q32850 | Calibration range |
Syber green | Molecular Probes | S-11484 | DNA quantification |
TE buffer | Invitrogen | P7589 | DNA quantification |
PBX 1x | Life technologies | 14190-094 | Washing |
DNase RNase free water | Life technologies | 10977-035 | Dilution |
Axygen tube | Axygen | MCT-175-C | ChIP purifiction |
Antibody | Company | Reference | ChIP concentration |
H3K27ac | Abcam | ab4729 | 3 µg for ESC and EBs, 1 µg for tissues |
H3K4me1 | Diagenode | C15410194 (pAb-194-050) | 3 µg for ESC and EBs, 1 µg for tissues |
H3K36me3 | Diagenode | C15410058 (pAb-058-050) | 3 µg for ESC and EBs, 1 µg for tissues |
H3K9me2 | Diagenode | C15410060 (pAb-060-050) | 3 µg for ESC and EBs, 1 µg for tissues |
H3K4me3 | Diagenode | C15410030 (pAb-030-050) | 3 µg for ESC and EBs, 1 µg for tissues |
H3K27me3 | Diagenode | C15410069 (pAb-069-050) | 3 µg for ESC and EBs, 1 µg for tissues |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone