Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Intracoronary acetylcholine testing has been established for the assessment of epicardial coronary spasm more than 30 years ago. Recently, the focus has shifted towards the microcirculation and it has been shown that microvascular spasm can be detected using ACH-testing. This article describes the ACH-test and its implementation in daily routine.
Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.
Angina pectoris is the hallmark of coronary artery disease and the concept of an epicardial stenosis causing myocardial ischemia and exercise-induced angina has been established for many years. However, many patients with angina pectoris do not have the typical triad of retrosternal pain, onset during exercise and relief by nitroglycerine or rest. Frequently patients report angina pectoris at rest or a combination of exertional and resting angina as well as shortness of breath upon exertion as a possible angina equivalent. In 1959 Prinzmetal was the first to introduce the concept of transient spasm of the coronary arteries causing angina at rest associated with ST-segment elevation on the electrocardiogram (ECG) but with preserved exercise capacity1. This hypothesis was confirmed later using coronary angiography and it appeared that coronary spasm can be present in patients with epicardial stenoses or normal coronary arteries2. In the 1980ies intracoronary acetylcholine provocation testing (ACH-test) for the detection of coronary artery spasm was established in Japan and subsequently the interested in clinical research for coronary spasm increased3.
However, after introduction of percutaneous coronary intervention in 1977 and the first stent implantation in 1986 the interest in coronary vasomotor disorders declined considerably at least in Europe and the United States. This may be also due to the invasive nature of the ACH-test (due to the short half-life of ACH it can only be administered into the coronary arteries for the assessment of coronary spasm). Still, many patients with signs and symptoms of myocardial ischemia do not have any relevant epicardial stenosis on coronary angiography4,5,6. In such patients intracoronary acetylcholine provocation testing is useful to detect a clinically relevant coronary vasomotor disorder and institute appropriate medical therapy7.
Acetylcholine is a neurotransmitter in the parasympathetic nervous system. It acts via nicotinergic as well as muscarinergic (mAChR) receptors. The latter are important for vascular homeostasis and acetylcholine binds on mAChR as a non-selective agonist. Activation of these receptors at the endothelial level leads to nitric oxide mediated vasodilatation whereas activation of mAChR on the vascular smooth muscle cells leads to vasoconstriction8. Depending on the integrity of the endothelium and the reactivity of the smooth muscle cells the net effect of intracoronary acetylcholine administration is vasodilatation or vasoconstriction. The physiologic response of coronary arteries in response to acetylcholine in human beings is not fully understood but it has been reported that vasodilatation as well as vasoconstriction of up to 25% of the vessel diameter may be physiologic as shown in patients with normal coronary arteries and no angina pectoris9.
Intracoronary acetylcholine provocation testing has been recommended by the European Society of Cardiology guidelines10 as well as the Japanese Circulation Society guidelines11 for assessment of epicardial and/or microvascular spasm in patients with angina pectoris and unobstructed coronary arteries. Intracoronary acetylcholine provocation testing has been established in daily clinical routine in the catheterization laboratory of our institution in 2003. Since 2006 a standardized protocol has been followed12. ACH-testing is generally performed in all patients with signs and symptoms of myocardial ischemia yet no relevant epicardial stenosis (<50%) on coronary angiography. ACH-testing is performed immediately after diagnostic coronary angiography according to the protocol described below. Ergonovine is another agent that is used for spasm provocation testing with a different mechanism of action. Detailed information on ergonovine testing can be found elsewhere12.
NOTE: Intracoronary acetylcholine testing has been approved by the local ethics committee and the protocol follows the guidelines of our institution for human research.
1. Preparation of the Acetylcholine Solutions (See Materials Table)
2. Preparation of the Syringes for Intracoronary Injection of Acetylcholine
3. Diagnostic Coronary Angiography
4. Intracoronary Injection of Acetylcholine
Interpretation of the acetylcholine test is based on three criteria. First, the patient is asked throughout the test whether or not symptoms occur. Frequently, patients report a reproduction of their usual symptoms such as chest pain, shortness of breath or other symptoms. This represents an important point for the overall interpretation of the test. Second, a 12-lead-ECG registration is continuously performed throughout the test with a special emphasis on ischemic ECG shifts such as ST-s...
It is feasible to implement the acetylcholine test in daily clinical routine in the catheterisation laboratory. Apart from the preparation of the ACH solutions there are several technical issues that have to be resolved before starting the test including radiolucent ECG leads for continuous 12-lead ECG registration. This is essential to be able to detect transient ischemic ECG changes during the test. Moreover, it is important to know that the ACH solutions can only be used for 2 hr. After that they should be newly prepa...
The authors have nothing to disclose.
This project is supported in part by grant KKF-15-1.
Name | Company | Catalog Number | Comments |
Vial of 20 mg acetylcholine chloride powder and 1 Ampoule of 2 ml diluent | Bausch & Lomb | NDC 24 208-539-20 | |
3x 100 ml NaCl 0.9 % | BBraun | 3200950 | |
3x syringe 50 ml each | BBraun | 4187903 | |
1x 2 ml syringe | BBraun | 4606027V | |
1x 10 ml syringe | BBraun | 4606108V | |
2x cannula 20 G 70 mm | BBraun | 4665791 | |
5x 5 ml syringe | BBraun | 4606051V | |
Contrast agent Imeron 350 with a 10 ml syringe for contrast injection | Bracco Imaging | 30699.03.00 | |
Coronary angiography suite (AXIOM Artis MP eco ) | Siemens | n/a |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone