Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
The ability of metastatic clones to colonize distant sites depends on their proliferation capacity and/or their ability to survive in the host microenvironment without significant proliferation. Here, we present an animal model that allows quantitative visualization of both types of liver colonization by metastatic clones.
Patients with a limited number of hepatic metastases and slow rates of progression can be successfully treated with local treatment approaches1,2. However, little is known about the heterogeneity of liver metastases, and animal models capable of evaluating the development of individual metastatic colonies are needed. Here, we present an advanced model of hepatic metastases that provides the ability to quantitatively visualize the development of individual tumor clones in the liver and estimate their growth kinetics and colonization efficiency. We generated a panel of monoclonal derivatives of HCT116 human colorectal cancer cells stably labeled with luciferase and tdTomato and possessing different growth properties. With a splenic injection followed by a splenectomy, the majority of these clones are able to generate hepatic metastases, but with different frequencies of colonization and varying growth rates. Using the In Vivo Imaging System (IVIS), it is possible to visualize and quantify metastasis development with in vivo luminescent and ex vivo fluorescent imaging. In addition, Diffuse Luminescent Imaging Tomography (DLIT) provides a 3D distribution of liver metastases in vivo. Ex vivo fluorescent imaging of harvested livers provides quantitative measurements of individual hepatic metastatic colonies, allowing for the evaluation of the frequency of liver colonization and the growth kinetics of metastases. Since the model is similar to clinically observed liver metastases, it can serve as a modality for detecting genes associated with liver metastasis and for testing potential ablative or adjuvant treatments for liver metastatic disease.
Patients with liver metastases from primary colorectal cancers (CRC) are characterized by a poor prognosis. The 5-year survival rate for primary nonmetastatic CRC (stages I - III) is estimated as 75 - 88%3,4, while patients with liver metastases (stage IV) have a 5-year survival rate of only 8 - 12%5,6. However, metastatic patients represent a heterogeneous group, presenting with different numbers of metastases and different recurrence times. Clinical observations indicate that the number of metastases (which may be proportional to colonizing ability or frequency of colonization) and the size of any single metastasis (proportional to the local growth rate) are independent prognostic factors1,7. In other words, the success of metastatic clones colonizing the liver depends on two major properties: their ability to grow and their ability to disseminate and survive in the liver microenvironment.
The design of successful clinical models with the capability of capturing and quantifying the properties of metastatic clones can drastically improve our understanding of liver metastasis biology and provide an effective tool for the design of potential therapeutic approaches. Models of experimental liver metastasis have been previously reported8,9, but neither of them provided the ability to quantitatively capture and describe properties of individual metastatic clones both in vivo and ex vivo.
Here, we present a new, advanced model of liver metastasis that includes the generation of tumor clones with different liver colonization efficiencies and growth properties. We employed a combination of dual-labeling of cancer cells with luciferase and tdTomato fluorescent protein with the generation of monoclonal cell lines that have intrinsic differences in metastatic capacity. In this experimental model, the data indicate that the development of liver metastases can be described in terms of colonization frequency and doubling time (Td), which is consistent with clinical observations. The quantitative nature of this model makes it easily adoptable for drug discovery and diagnostic purposes.
All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of Chicago (Protocol # 72213-09) and performed under sterile conditions.
1. Preparations
2. Generation of Luciferase/tdTomato-labeled Monoclonal Cell Lines 10,11
3. Calibration of Fluorescent Signal Intensity as a Function of Cell Number
4. Animal Model of Liver Metastases
5. In Vivo Bioluminescent Imaging
6. Ex Vivo Fluorescent Imaging
The goal of this experiment was to establish a consistent and easily reproducible animal model with the potential for the serial quantification of the in vivo metastatic tumor burden and for the estimation of the colonizing frequency and growth kinetics of developing liver metastases. Figures 2-6, with legends, are provided from our previous publication under a Creative Commons CC-BY license10.
...
The animal model presented in the current report is based on two major approaches. First, in order to ensure the ability to observe metastatic clones with different propensities to colonize and proliferate in the liver, a panel of highly heterogeneous monoclonal cell lines was established, rather than an established unfractionated cancer cell line12,13. The monoclonal approach to metastasis development is justified by recent genomic data14 and was successfully used previously to model the metastatic...
The authors have nothing to disclose.
We would like to thank Dr. Geoffrey L. Greene (University of Chicago) for the Luc2-tdTomato plasmid and the HCT116 cell line, Mr. Ani Solanki (Animal Resource Center) for the mice management, and Dr. Lara Leoni for the assistance with the DLIT. Quantifications of fluorescent and luminescent intensities were performed in the Integrated Small Animal Imaging Research Resource at the University of Chicago on an IVIS Spectrum (PerkinElmer, Hopkinton, MA). This work was supported by the Virginia and D.K. Ludwig Fund for Cancer Research, the Lung Cancer Research Foundation (LCRF), the Prostate Cancer Foundation (PCF), and the Cancer Center Support Grant (P30CA014599). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Name | Company | Catalog Number | Comments |
IVIS Spectrum In Vivo Imaging System | Caliper Life Sciences | 124262 | In Vivo imaging system |
LivingImage 4.0 Software | Caliper Life Sciences | 128165 | Imaging software |
VAD-MGX Research Anesthetic Machine | Vetamac | VAD-MGX | Inhalation anesthesia machine |
DMEM | Gibco | 11965-118 | Cell culture reagents |
DPBS | Gibco | 14190250 | Cell culture reagents |
Penicillin/Streptomycin, liquid (10,000 units penicillin;10,000 μg streptomycin) | Invitrogen | 15140163 | Cell culture reagents |
HBSS | ThermoFisher | 24020117 | Cell culture reagents |
Buprenex Injection (0.3 mg/mL) | Reckitt Benckiser Healthcare Ltd. | 12496-0757-5 | Buprenorphine hydrochloride |
Gemini Cautery System | Braintree Scientific | GEM 5917 | Hand-held cautery for splenectomy |
Micro Clip; Straight; 70 Grams Pressure; 1.5 mm Clip Width; 10 mm Jaw Length | Roboz Surgical Instrument | RS-5426 | Hemoclip: Hemostasis instruments after spleen injection |
D-luciferin, potassium salt | Goldbio Technology | LUCK-1G | Luciferin potassium salt |
Opti-MEM I Reduced Serum Medium | Gibco | 31985062 | Reduced Serum Medium |
TC20 Automated Cell Counter | BIO-RAD | 1450102 | Automatic cell counter |
JMP10 software | SAS Institute | Data analysis software | |
BD FACSAria II cell sorter | BD Biocsiences | Cell sorter |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone