Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
This study describes methods for the T7-mediated co-expression of multiple genes from a single plasmid in Escherichia coli using the pMGX plasmid system.
Co-expression of multiple proteins is increasingly essential for synthetic biology, studying protein-protein complexes, and characterizing and harnessing biosynthetic pathways. In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase is described. This system allows many genes to be expressed simultaneously from one plasmid. Here, a set of four related vectors, pMGX-A, pMGX-hisA, pMGX-K, and pMGX-hisK, with either the ampicillin or kanamycin resistance selectable marker (A and K) and either possessing or lacking an N-terminal hexahistidine tag (his) are disclosed. Detailed protocols for the construction of synthetic operons using this vector system are provided along with the corresponding data, showing that a pMGX-based system containing five genes can be readily constructed and used to produce all five encoded proteins in Escherichia coli. This system and protocol enables researchers to routinely express complex multi-component modules and pathways in E. coli.
Co-expression of multiple proteins is increasingly essential, particularly in synthetic biology applications, where multiple functional modules must be expressed1; in studying protein-protein complexes, where expression and function often require co-expression2,3; and in characterizing and harnessing biosynthetic pathways, where each gene in the pathway must be expressed4,5,6,7,8. A number of systems have been developed for co-expression, particularly in the host organism Escherichia coli, the work horse for laboratory recombinant protein expression9. For example, multiple plasmids with differing selectable markers can be used to express individual proteins using a wealth of different expression vectors10,11. Single plasmid systems for multiple protein expression have used either multiple promoters to control the expression of each gene10,12; synthetic operons, where multiple genes are encoded on a single transcript2,13; or, in some cases, a single gene encoding a polypeptide that is ultimately proteolytically processed, yielding the desired proteins of interest14.
Figure 1: pMGX workflow showing the construction of a polycistronic vector. The pMGX system provides a flexible, easy-to-use strategy for the construction of synthetic operons under the control of an inducible T7 promoter. Please click here to view a larger version of this figure.
In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase (Figure 1) is described. This system allows many genes to be expressed simultaneously from one plasmid. It is based on a plasmid system, originally called pKH22, that has been used successfully for a number of different applications6,7,8. Here, this plasmid set is expanded to include four related vectors: pMGX-A, an expression vector lacking any C- or N-terminal tags and with the ampicillin resistance marker; pMGX-hisA, an expression vector encoding an N-terminal hexahistidine tag and with the ampicillin resistance marker; pMGX-K, an expression vector lacking any C- or N-terminal tags and with the kanamycin resistance marker; and pMGX-hisK, an expression vector encoding an N-terminal hexahistidine tag and with the kanamycin resistance marker. In this study, the method for generating a polycistronic vector containing five genes using the pMGX system, specifically pMGX-A, is demonstrated along with the successful production of each individual protein in Escherichia coli.
1. Obtaining Genes of Interest
2. Cloning Genes of Interest into a Multigene Expression System Vector, pMGX18
3. Inserting Gene 2 into the pMGX Vector Containing Gene 1, pMGX-yfg1
4. Adding a Third Gene into the pMGX Vector Containing Genes 1 and 2, pMGX-yfg1,2
5. Producing Proteins of Interest Using a Multigene Expression System and Assessing Production by Western Blotting
In this study, the goal was to co-express five proteins from a single plasmid. The five-codon optimized synthetic gene fragments encoding either N- or C-terminal hexahistidine tags were purchased commercially. The synthetic genes were amplified by PCR and individually cloned into a PCR-blunt vector and sequenced. To generate the polycistronic plasmid, the five genes of interest were first cloned into a suitable pMGX plasmid, pMGX-A. Figure 2 shows PCRBlunt-
Co-expression of multiple genes is increasingly essential, particularly in characterizing and reconstituting complex, multigene metabolic pathways3,4,5. The pMGX system makes multigene co-expression in E. coli routine6,7,8 and accessible to diverse researchers. In this study, five proteins of interest were shown to be simultane...
The authors have nothing to disclose.
This work was supported by the Natural Sciences and Engineering Research Council of Canada.
Name | Company | Catalog Number | Comments |
Enzymes | |||
Alkaline Phosphatase, Calf Intestinal (CIP) | New England Biolabs | M0290S | |
AvrII | New England Biolabs | R0174S | |
EcoRI | New England Biolabs | R0101S | |
NdeI | New England Biolabs | R0111S | |
XbaI | New England Biolabs | R0145S | |
Herculase II Fusion DNA Polymerase | Agilent Technologies | 600677 | |
T4 DNA Ligase | New England Biolabs | M0202S | |
Name | Company | Catalog Number | Comments |
Reagents | |||
1 kb DNA ladder | New England Biolabs | N3232L | |
4-20% Mini-PROTEAN TGX Stain-Free Protein Gels | Bio-Rad | 456-8095 | |
50 x TAE | Fisher Thermo Scientific | BP1332-4 | |
Agar | Fisher Thermo Scientific | BP1423-500 | |
Agarose | Fisher Thermo Scientific | BP160-500 | |
Ampicilin | Sigma-Alrich | A9518-5G | |
BL21 (DE3) chemically comeptent cells | Comeptent cell prepared in house | ||
B-PER Bacterial Protein Extraction Reagent | Fisher Thermo Scientific | PI78243 | |
dNTP mix | Agilent Technologies | Supplied with polymerase | |
Gel Extraction Kit | Omega | D2500-02 | E.Z.N.A Gel Extraction, supplied by VWR Cat 3: CA101318-972 |
Glycine | Fisher Thermo Scientific | BP381-1 | |
His Tag Antibody [HRP], mAb, Mouse | GenScript | A00612 | |
Immobilon Western Chemiluminescent HRP Substrate | EMD Millipore | WBKLS0100 | |
IPTG | Sigma-Alrich | 15502-10G | |
LB | Fisher Thermo Scientific | BP1426-500 | |
Methanol | Fisher Thermo Scientific | A411-20 | |
Pasteurized instant skim milk powder | Local grocery store | No-name grocery store milk is adequate | |
Nitrocellulose membrane | Amersham Protran (GE Healthcare Life Sciences) | 10600007 | Membrane PT 0.45 µm 200 mm X 4 m, supplied by VWR Cat #: CA10061-086 |
Plasmid DNA Isolation Kit | Omega | D6943-02 | E.Z.N.A Plasmid DNA MiniKit I, supplied by VWR Cat #: CA101318-898 |
pMGX | Boddy Lab | Request from the Boddy Lab Contact cboddy@uottawa.ca | |
Primers | Intergrated DNA Technologies | Design primers as needed for desired gene | |
Synthetic Gene | Life Technologies | Design and optimize as needed | |
Thick Blot Filter Paper | Bio-Rad | 1703932 | |
Tris base | BioShop | TRS001.1 | |
Tween-20 | Sigma-Alrich | P9416-50ML | |
XL1-Blue chemically competent cells | Comeptent cell prepared in house | ||
Name | Company | Catalog Number | Comments |
Equipment | |||
BioSpectrometer | Eppendorf | RK-83600-07 | |
Gel box - PAGE | Bio-Rad | 1658005 | Mini-PROTEIN Tetra Vertical Electrophoresis Cell |
Gel Imager | Alpha Innotech | AlphaImager EC | |
Incubator-oven | Fisher Thermo Scientific | 11-690-650D | Isotemp |
Incubator-shaker | Fisher Thermo Scientific | SHKE6000-7 | MaxQ 6000 |
Personna Razors | Fisher Thermo Scientific | S04615 | |
Power Pack | Bio-Rad | S65533Q | FB300 |
Transilluminator | VWR International | M-10E,6W | |
Thermocylcer | Eppendorf | Z316091 | Mastercycler Personal, supplied by Sigma |
UV Face-Shield | 18-999-4542 | ||
Waterbath | Fisher Thermo Scientific | 15-460-2SQ | |
Western Transfer Apparatus | Bio-Rad | 1703935 | Mini-Trans Blot Cell |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone